首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Signals of VLF transmitters of the Omega navigation system located in the auroral zone (66.4°N, 13.2°E, L= 5) were recorded by the VLF receiving equipment of the Interkosmos 19 satellite. Signals at frequencies between 10.2 and 13.6 kHz were received in a region above the transmitters, frequently with whistler-type echoes. An analysis of these echoes has shown their predominating occurrence in periods of low geomagnetic activity (Kp<2+). The occurrence region of these phenomena in the outer ionosphere has the dimension of about 1000 km and its position is betweenL= 2.5 and L= 4.4. The delay of echo-signals is practically the same during one satellite pass but its values for different satellite revolutions lie between 2.5 and 3.5 s. The frequency spectrum of these signals can be broadened up to 100 Hz. On the basis of calculations made, it can be shown that the experimental results are generally in accordance with the hypothesis of nonlinear ducting of VLF waves in the magnetosphere.  相似文献   

2.
Employing SoftPAL receiver, amplitude variations of VLF transmitter signals NWC (19.8?kHz) and NPM (21.4?kHz) are analyzed at Agra station in India (Geograph. lat. 27.2°N, long. 78°E) ±15?days from five major earthquakes of magnitude M?=?6.9–8.5 occurred in Indian subcontinent during the years 2011–2013. We apply nighttime fluctuation (NF) method and show that in almost all cases the trend decreases and dispersion and NF increase on the same days corresponding to each earthquake about 11–15?days prior to the main shock. Assuming that the ionospheric perturbations are caused by atmospheric gravity waves (AGW), we also calculate AGW modulation index for each case and find its values increased on the days amplitude fluctuations take place. Its value is decreased in one case only where the perturbations may be attributed to penetration of seismogenic electric field.In order to support the above results we also present GPS-TEC data analyzed by us corresponding to three of the above earthquakes. We study the TEC anomalies (unusual enhancements) and find that in one case the precursory period is almost the same as that found in NF method.  相似文献   

3.
The paper presents data from some campaigns at Sura heating facility in 2011–1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil’sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50–120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil’sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil’sursk and backscattered signals in Observatory were observed at the height at 40–100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.  相似文献   

4.
Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008. We have studied VLF amplitude anomalies related to the EQs occurred in 2008–2009 years with magnitude more than 5 on the path way from the VLF transmitters to the Tashkent station assuming that propagation of VLF ground-based transmitters signals can be perturbed by EQ preparation detectable from the ground-based measurements in the VLF bands. For analyzing narrowband data we have used the nighttime fluctuation (NF) method paying attention to the data obtained during the local nighttime (20:00 LT–04:00 LT) in Tashkent where the VLF receiver is operating. The mean nighttime amplitude (or trend) and nighttime fluctuation are found to increase significantly before the EQ occurred on the path way from the transmitters to the receiver. The obtained results have revealed an agreement with VLF amplitude anomalies observed in Tashkent VLF station during the strong EQs occurred on the path way from the transmitters to the receiver. Some results are presented to show the probing potentiality of VLF waves to predict short term EQs with high magnitude.  相似文献   

5.
The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ~27?days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc.In this article, the periodicity of ~27?days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30?days are canceled.The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°.The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non-radiative interactions between the solar wind and the magnetosphere. The 27-day signal obtained in the magnetic activity was compared with the signals found in the other parameters resulting in a series of cross-correlations curves with maximum correlation between 3 and 5?days of delays for the radiative and between 0 and 1?days of delay for the non-radiative parameters. This result supports the idea that the physical process responsible for the 27-day signal in the magnetic activity is related to the solar wind and not to the solar electromagnetic radiation.  相似文献   

6.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

7.
During August 1981, a 50 MHz c.w. radar system was operated in central Canada to measure auroral scatter amplitudes and Doppler spectra from a scattering region centered near 66° magnetic invariant latitude (L ≈ 6.0). Narrow beams from 3 transmitters, differing in frequency by 1 KHz, were directed to cover a common volume of the ionosphere over a ground location at 56.3°N, 103.5°W. The scattered signals were received on narrow beam antennas at two receiving sites, and recorded in analog form on magnetic tape under the control of an AIM65 microcomputer. The analog tapes were digitized later and FFT-processed to obtain Doppler spectra and amplitudes.The 6 transmission paths were designed to provide several magnetic aspect angles varying by 1.5°-7° from perpendicularity with the earth's field B and two streaming aspect angles differing by ~38°. The objective was to employ controlled geometric factors to study the functional dependency of signal amplitudes and Doppler shifts on magnetic and streaming aspect angles. Several hundred hours of excellent data were obtained in continuous operation during the month of August 1981. Preliminary results will be reported.  相似文献   

8.
The in situ measurements of snow surface temperature (SST) and snow height (SH) are very difficult with high costs, particularly in Greenland Ice Sheet (GrIS). Since the snow depth variations coupling with surface temperature are related to GPS multipath, it is possible to estimate the snow depth and surface air temperature variations by incorporating GPS-Reflectometry (GPS-R). In this paper, the reflected signals from ground GPS receivers are used to sense the SST and SH variations based on the thermophysical behavior and variations of snow layer from April to June 2010 at SMM1 site and from March to December 2010 at MARG site in Greenland. The results show that the mean daily changes in the ionospheric geometrical-free linear combination (GPS-L4) of dual-frequency GPS signals are related to daily SST and SH variations. The nonparametric bootstrapping model in direct (forward) and inverse models are developed and applied to estimate the SST and SH variations. The mean biases of SST and SH estimates are 0.18 °C and 0.23 m at SMM1 site, respectively, and 3.8 °C and 0.13 m at MARG site, respectively.  相似文献   

9.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

10.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

11.
Transionospheric radio signals may experience fluctuations in their amplitude and phase due to irregularity in the spatial electron density distribution, referred to as scintillation. Ionospheric scintillation is responsible for transionospheric signal degradation that can affect the performance of satellite based navigation systems. Usually, the scintillation activity is measured by means of indices such as the normalised standard deviation of the received intensity S4 and the standard deviation of the received phase σ? typically calculated over 1 min of data. Data from a GPS scintillation monitor based on 50 Hz measurements recorded at Dirigibile Italia Station (Ny-Alesund, Svalbard), in the frame of the ISACCO project ( De Franceschi et al., 2006) are used to investigate possible adoption of an alternative parameter for the estimate of phase fluctuations: i.e., the standard deviation of the phase rate of change S?. This parameter is shown to better correlate with S4 being much less detrending dependent than σ?. The couple (S4, S?) should be then considered a more physical proxy of radio scintillation than the couple (S4, σ?).  相似文献   

12.
Ionospheric perturbations in possible association with a major earthquake (EQ) (M?=?8.5) which occurred in India-Oceania region are investigated by monitoring subionospheric propagation of VLF signals transmitted from the NWC transmitter (F?=?19.8?kHz), Australia to a receiving station at Varanasi (geographic lat. 25.3°N, long 82.99°E), India. The EQ occurred on 11 April 2012 at 08:38:35?h UT (magnitude?≈?8.5, depth?=?10?km, and lat.?=?2.3°N, long.?=?93.0°E). A significant increase of few days before the EQ has been observed by using the VLF nighttime amplitude fluctuation method (fixed frequency transmitter signal). The analysis of total electron contents (TEC) derived from the global positioning system (GPS) at three different stations namely, Hyderabad (latitude 17.38°N, longitude 78.48°E), Singapore (latitude 1.37°N, longitude 103.84°E) and Port Blair (latitude 11.62°N, longitude 92.72°E) due to this EQ has also been presented. Significant perturbation in TEC data (enhancements and depletion) is noted before and after the main shock of the EQ. The possible mechanisms behind these perturbations due to EQ have also been discussed.  相似文献   

13.
Degradation of transionospheric radio signals and operation failures during ionospheric disturbances constitute a crucial factor of space weather influence on radio engineering satellite systems performance. We found that during the main phase of strong magnetic storms in 2000–2003 when the auroral oval expands into mid-latitudes, its southern boundary develops a region with intense small-scale electron density irregularities. Such irregularities may cause strong amplitude scintillations of GPS signals at both GPS operating frequencies. The another consequence of it was significant random GPS signal phase fluctuations, breaking-down of signal tracking, and sharp increasing of GPS positioning errors as a result.  相似文献   

14.
An HF telecommand system for the control of long duration balloon flights at any point on the globe is described. The system proposed consists of a network of low-power transmitters operating at the same carrier frequency. The choice of transmitter frequency, power and location are presented. Control of the transmitters may be performed remotely by means of the public switched telephone network; an assessment of the error-rate in the system as a whole is given.  相似文献   

15.
基于子午工程北大深圳站(22.59°N,113.97°E)电离层GPS双频接收机在2011年1月1日至2017年12月31日连续7年的长时间序列闪烁和TEC观测数据,分析不同太阳活条件下华南赤道异常北驼峰区观测到的GPS卫星L波段电离层闪烁事件时空分布特征及其对通信的影响.结果表明:GPS闪烁事件几乎都发生在夜间,且主要发生在春秋分月份;在不同太阳活动条件下,夜间GPS闪烁事件都主要发生在北驼峰区域靠近磁赤道的一侧,且GPS闪烁事件存在明显的东-西侧天区不对称性,即在台站西侧天区发生的闪烁事件明显偏多;在不同太阳活动条件下,弱闪烁事件伴随的TEC耗尽和卫星失锁事件比例相对较低,强闪烁事件则大部分都伴随着TEC耗尽和卫星失锁事件的发生.   相似文献   

16.
Presented is the analytical approximation of averaged solar wind velocity radial dependence in the solar wind acceleration region at heliolatitudes below 60° under low and moderate solar activity. This empirical approximation is based on the data of radio sounding of the solar corona with radio signals from various spacecraft. Deduced is an equation connecting the solar wind velocity radial dependence and the radial dependence of solar wind plasma polarization electric field intensity. This allows constructing a semi-empirical radial dependence of plasma polarization electric field corresponding to the empirical radial dependence of solar wind velocity. Main properties of the semi-empirical dependence, which is based on radio sounding data, are described.  相似文献   

17.
A continuous monitoring of coastal sea level changes is important for human society since it is predicted that up to 332 million people in coastal and low-lying areas will be directly affected by flooding from sea level rise by the end of the 21st century. The traditional way to observe sea level is using tide gauges that give measurements relative to the Earth’s crust. However, in order to improve the understanding of the sea level change processes it is necessary to separate the measurements into land surface height changes and sea surface height changes. These measurements should then be relative to a global reference frame. This can be done with satellite techniques, and thus a GNSS-based tide gauge is proposed. The GNSS-based tide gauge makes use of both GNSS signals that are directly received and GNSS signals that are reflected from the sea surface. An experimental installation at the Onsala Space Observatory (OSO) shows that the reflected GNSS signals have only about 3 dB less signal-to-noise-ratio than the directly received GNSS signals. Furthermore, a comparison of local sea level observations from the GNSS-based tide gauge with two stilling well gauges, located approximately 18 and 33 km away from OSO, gives a pairwise root-mean-square agreement on the order of 4 cm. This indicates that the GNSS-based tide gauge gives valuable results for sea level monitoring.  相似文献   

18.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

19.
Regional sea level studies help to identify the vulnerable areas to the sea level rise. This study investigates the impact of climate modes on sea level variations and trends around Australia using altimetry data, climate indices, and sea level records from tide gauge stations. Here, we show that the sea level variations are negatively correlated with climate indices to the north and west of Australia. The spectral analyses of the climate indices and tide gauge data suggest that a low frequency signal with a period of 11 years emerges during the mid 1980s. Since the 25-year length of the satellite altimetry record is yet too short to detect low frequency signals, their effect on the estimation of regional sea level trend is unknown. Therefore, we estimate the sea level trend with consideration of this signal and using a two-step method. All signals with periods shorter than 7.5 years are first removed from sea level time series and then the trend is estimated using the parametric model that includes the 11-year signal. The skill of the parametric model in explaining the variations in sea level anomaly validates the presence of the 11-year signal detected in the spectrograms of the tide gauge data and climate indices. The average sea level trend for the study area is estimated as 3.85 ± 0.15 mm/year.  相似文献   

20.
Signals of the transmitter of the Omega navigation system located in the Southern Hemisphere (Reunion, 21.0°S, 55.3°E, L= 1.35) recorded by Interkosmos satellites on passes over the Northern Hemisphere, have shown that these signals can be detected in the conjugate region within a range of L-values between 1.5 – 3.0. Both ducted and non-ducted propagation has been observed. The most frequent propagation is in the whistler mode along the line of forceL= 1.8. The measured signal delays are in accordance with the observed dispersion of whistlers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号