首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

2.
The onset of Alfvén intermittent chaos in space plasmas is studied by numerically solving the derivative non-linear Schrödinger equation (DNLS) under the assumption of stationary Alfvén waves. We describe how the Alfvénic fluctuations of the magnetic field can evolve from periodic to chaotic behavior through a sequence of bifurcations as the dissipation is varied. The collision of a chaotic attractor with an unstable periodic orbit leads to the generation of strongly chaotic behavior, in an event known as interior crisis. We also show that in the DNLS equation, chaotic attractors coexist with non-attracting chaotic sets responsible for transient chaotic behavior. After the interior crisis point, a wide chaotic attractor can be decomposed into two coupled non-attracting chaotic sets, resulting in intermittent chaotic time series.  相似文献   

3.
Geometrical considerations based on a conical sheet model of the observed DAM sources show that DAM is generated on field lines in the active longitude sector φ ~ 200 ± 90°. We show how Io excites Alfvén waves and calculate the propagation of these waves through the inhomogenous torus and magnetosphere. The power flux at high latitudes is largest at two longitudes which are seen as the B1, B2, A and C sources. We also discuss the parallel electric field accompanying the Alfvén wave pulses and show that at high latitudes electrons can be accelerated to energies in excess of 1000 eV. It is suggested that these current carrying electrons excite ion-cyclotron, upper and lower-hybrid electrostatic waves which may all play crucial roles in the generation of DAM.  相似文献   

4.
The whistler-mode chorus waves are one of the most important plasma waves in the Earth’s magnetosphere. Generally, the amplitude of whistler-mode chorus waves prefers to strengthen when the energetic fluxes of anisotropic electrons increase outside the plasmapause. This characteristic is commonly associated with the geomagnetic storms or substorms. However, the relationship between the solar wind dynamic pressure (Psw) and the long-time variation of chorus waves during the quiet period of the geomagnetic activity still needs more detailed investigations. In this paper, based on MMS observations, we present a chorus event just observed in the inner side of magnetopause without obvious geomagnetic storms or substroms. Interestingly, during this time interval, some Psw fluctuations were recorded. Both the amplitudes and frequencies of chorus waves changed as a response to the variation in Psw. It proved that the enhancement of Psw increases the energetic electrons fluxes, which provides free energies for the chorus amplification. Furthermore, the wave growth rates calculated using linear theory increases and the central frequency of the chorus waves shifts to a higher frequency when the Psw enhancement is greater, which are also consistent well with the observations. The results provide a direct evidence that the Psw play an important role in the long-time variation of whistler-mode chorus waves inside the magnetopause.  相似文献   

5.
基于激光雷达夜间观测提取重力波方法的定量比较   总被引:1,自引:1,他引:0       下载免费PDF全文
以激光雷达夜间观测的温度数据的时空范围和时空分辨率作为参考,构造具有已知背景温度(由稳态背景、行星波和潮汐波组成)和重力波频谱分布的合成温度数据,针对合成温度数据,分别采用已有的夜间平均方法和时间滑动平均方法提取重力波.在此基础上,提出了用谐波函数近似表示背景大气变化的谐波拟合方法提取重力波.通过比较提取出的重力波与事...  相似文献   

6.
Hα filtergrams and magnetograms indicate that bright features (such as plages and granulation boundaries) correspond to areas of strong vertical magnetic fields and dark features (such as fibrils and filaments) are associated with strong horizontal magnetic field. It was suggested by /1/ that there is an excess dissipation of waves, available for heating, in regions of vertical magnetic fields. With this suggestion in mind, we have investigated the physical heating mechanism due to ponderomotive forces exerted by turbulent waves along curved magnetic flux loops. Results show that the temperature difference (ΔT) between the inside and outside of the flux loop can be classified into three parts; ΔT = ΔT1 + ΔT2 + ΔT3; in which ΔT1 and ΔT3 represent the heating or cooling effect from the ponderomotive force, and ΔT2 is the heating effect due to conversion of turbulent energy from the localized plasma. The specific physical mechanism (i.e., the ponderomotive forces exerted by turbulent waves), is used to illustrate solar atmospheric heating via an example leading to the formulation of plages.  相似文献   

7.
We study time evolution of an energy spectrum of a proton flux in the range of 47 – 4750 keV for the energeticparticle event occurred on 255 DOY in 1999, which we consider as one of typical diffusive acceleration events associated with interplanetary shocks and irrespective of large X-ray solar flares. Fast enhancement during evolution is found in the range of less than about 0.5 MeV. Our previous numerical simulations using Stochastic Differential Equation method could not show this behavior, although we obtained results showing a power law energy spectrum, which suggesting that energetic particles are accelerated diffusively by shock waves, the first-order Fermi acceleration. We consider that less than 0.5 MeV protons need to exist to explain behavior of the observational energy spectrum and perform numerical simulations in order to investigate proper injection models for this event.  相似文献   

8.
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <~5?MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L?=?~4–6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L?<?4.5 and AE1?<?300?nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.  相似文献   

9.
Mesospheric frontal-type gravity waves are an uncommon type of wave disturbance that occurs in the mesospheric OH, Na, O2, and O(1S) nightglow. They are understood to be the result of gravity waves exhibiting various degrees of non-linear behavior. Despite their similar appearance in all-sky images, careful analysis reveals that there are at least two distinct types of frontal wave disturbances, each with completely different consequences in terms of vertical momentum transport and deposition. Therefore, a correct identification is important in order to characterize their propagation modes. In this report we present the frontal gravity wave activity that occurred during a twelve-month period at Millstone Hill (42.6°N, 172.5°W), a mid-latitude site, to illustrate their range of behaviors.  相似文献   

10.
Planetary scale waves in the equatorial upper mesosphere were studied by measuring the airglow OI557.7 nm, O2b(0,1) and OH(6,2) emission intensities and OH rotational temperature at São João do Cariri (7.4°S; 36.5°W). From four years of data, 1998–2001, periodic oscillations of the airglow emissions were analyzed using the Lomb–Scargle spectral analysis. An oscillation of 3–4 days was frequently observed, which might be ultra-fast Kelvin waves. No seasonal dependency of the wave activity was found. On some occasions we found a quasi-5-day oscillation with a phase difference between the emissions, suggesting an upward energy flow. This is interpreted as a normal mode Rossby wave.  相似文献   

11.
二维静电孤立波的粒子模拟研究   总被引:1,自引:0,他引:1  
利用二维粒子模拟程序研究了双流不稳定性激发静电波并演化为静电孤立波的物理过程.计算结果表明,在线性增长阶段,主要激发的是沿磁场传播的静电波;在非线性演化阶段,相邻的静电波会互相合并,直至形成静电孤立波,并可激发静电哨声波.还研究了磁场强度和离子温度对此过程的影响.当磁场强度比较小时,无法形成静电孤立波,只有磁场强度达到一定程度后静电孤立波才能形成;同时,离子温度会影响静电孤立波的稳定性,当离子温度比较小时,静电孤立波的稳定性减弱,在演化一段时间后会逐渐瓦解.   相似文献   

12.
Based on an advanced numerical model for excited hydroxyl (OH*) we simulate the effects of gravity waves (GWs) on the OH*-layer in the upper mesosphere. The OH* model takes into account (1) production by the reaction of atomic hydrogen (H) with ozone (O3), (2) deactivation by atomic oxygen (O), molecular oxygen (O2), and molecular nitrogen (N2), (3) spontaneous emission, and (4) loss due to chemical reaction with O. This OH* model is part of a chemistry-transport model (CTM) which is driven by the high-resolution dynamics from the KMCM (Kühlungsborn Mechanistic general Circulation Model) which simulates mid-frequency GWs and their effects on the mean flow in the MLT explicitly. We find that the maximum number density and the height of the OH*-layer peak are strongly determined by the distribution of atomic oxygen and by the temperature. As a results, there are two ways how GWs influence the OH*-layer: (1) through the instantaneous modulation by O and T on short time scales (a few hours), and (2) through vertical mixing of O (days to weeks). The instantaneous variations of the OH*-layer peak altitude due to GWs amount to 5–10 km. Such variations would introduce significant biases in the GW parameters derived from airglow when assuming a constant pressure level of the emission height. Performing a sensitivity experiment we find that on average, the vertical mixing by GWs moves the OH*-layer down by ~2 to 7 km and increases its number density by more than 50%. This effect is strongest at middle and high latitudes during winter where secondary GWs generated in the stratopause region account for large GW amplitudes.  相似文献   

13.
A coronal explosion is a density wave observed in X-ray images of solar flares. The wave occurs at the end of the impulsive phase, which is the time at which the flare's thermal energy content has reached its maximum value. It starts in a small area from where it spreads out, mainly into one hemisphere, with velocities that tend to rapidly decrease with time, and which are between ~ 103 and a few tens of km s?1. We interpret them as magneto-hydrodynamic waves that (mainly) move downward from the low corona into denser regions.  相似文献   

14.
China’s Space Astronomy and Solar Physics in 2011-2012   总被引:1,自引:1,他引:0  
In the first part of this paper, we describe briefly the mid and long-term plan of Chinese space astronomy, its preliminary study program, the current status of satellite missions undertaken, and the current status of astronomy experiments in China’s manned space flight program. In the second part, the recent research progress made in the fields of solar physics is summarized briefly, including solar vector magnetic field, solar flares, CME and filaments, solar radio and nonthermal processes, EUV waves, MHD waves and coronal waves, solar model and helioseismology, solar wind and behavior of solar cycle.   相似文献   

15.
The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.  相似文献   

16.
地形产生的山地波及其传播过程模拟研究   总被引:1,自引:0,他引:1  
气流经过地形产生的山地波是大气重力波研究的重要类别之一.从大气运动的控制方程组出发,建立模拟地形产生的山地波及其传播过程的二维数值模式.利用水平背景风场、地形和垂直速度之间的关系,在模式中引入垂直速度扰动作为地形产生山地波的激发源.通过模拟该激发源引起的扰动即山地波在大气中的传播过程,再现了山地波的产生、传播及充分发展过程.通过分析水平波长、垂直波长、位温扰动、流线,在空间尺度上描述了山地波的产生、传播及充分发展的过程.在气流经过地形产生的山地波的传播过程中,其水平波长λx的范围为2.5~5km,垂直波长λz约为2.5km.这些结果与利用山地波线性理论计算的垂直波长一致,从而验证了本模式能够模拟地形产生的山地波及其传播过程,为深入了解山地波的产生过程及其在中高层大气中的传播机制和效应奠定了基础.   相似文献   

17.
利用瑞利激光雷达观测数据,分析了北京地区35~70km高度范围内大气温度和重力波活动的季节变化.发现北京地区30~70km高度范围内的大气温度有明显的年周期变化:平流层顶最高温度出现在6,7月份,大约为270K;中间层70km高度最低温度也出现在6,7月份,大约为200K.以2014年10月14日晚数据为例,分析重力波势能密度,发现50km以下重力波势能存在耗散,而在50km以上重力波近乎无耗散地向上传播.通过对比35~50km高度范围内的平均势能密度,对北京地区重力波活动强弱的季节变化进行了研究.研究结果表明,北京上空重力波活动强度具有明显的年周期变化,冬季平均势能密度为18J·kg-1,夏季为8J·kg-1,且冬季重力波活动强度约为夏季的两倍.此外,还分析了春夏秋冬四个季节重力波势能密度随高度的变化.结果表明,不同季节和不同高度的重力波势能密度不同.   相似文献   

18.
We obtained data on temperature in the mesopause vicinity from ground-based observations of the hydroxyl airglow at mid-latitudinal sites, Zvenigorod (56°N, 37°E), located near Moscow, over 2000–2012, and Tory (52°N, 103°E), Eastern Siberia, over 2008–2012. Seasonal behavior of the temperature and its monthly and nightly mean variances are presented. A comparison of the results obtained at two different regions of Russia shows higher values of the mesopause temperature variability in Eastern Siberia. We perform an analysis of the multi-year changes in the temperature variability characteristics based on the Zvenigorod observational data.  相似文献   

19.
This paper presents the global spatial (latitude and altitude) structure and temporal variability of the ∼23-day ionospheric zonally symmetric (s = 0) planetary wave (PW) seen in the Northern winter of 2008/2009 (October 2008–March 2009). It is shown that these ∼23-day ionospheric oscillations are forced from PWs propagating from below. The COSMIC ionospheric parameters foF2 and hmF2 and electron density at fixed altitudes and the SABER temperatures were utilized in order to define the waves which are present simultaneously in the atmosphere and ionosphere. The long-period PWs from the two data sets have been extracted through the same data analysis method. The similarity between the lower thermospheric ∼23-day (s = 0) temperature PW and its ionospheric electron density response provides valuable and strong experimental evidence for confirming the paradigm of atmosphere–ionosphere coupling.  相似文献   

20.
Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 − 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ⋍ 1 Re and penetrated ⋍ 1 Re into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0–100 eV) He+ and the warm (0.1–16 keV/e) O+ and He+ heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号