首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Results of experimental studies of the ionospheric effects produced by CRRES barium releases are considered. The experimental observations of HF spectral characteristics by Doppler method are made by a network of long distance radio paths intersecting the L-shell of releases. The time dependence of their occurrence relative to the moment of release and the character of changes of spectral parameters produces signal effects (SE) which may be classified as: the unique burst, the quasiperiodic group of bursts, the regular changes of spectral parameters and wave processes. Observed types of SE are analogous to those seen when the releases were produced at the heights from 140 to 160 km. The result of experimental observations testify that there are special geophysical phenomena produced by barium releases.  相似文献   

3.
Four recent sounding rocket experiments demonstrate that the release of neutral gas from both positively and negatively charged vehicles returns the vehicle potential to near the plasma potential. Early active experiment payloads, CHARGE-2 and SPEAR-1, observed enhanced currents from/to the vehicles during unplanned attitude thruster firings. The follow-on CHARGE-2B and SPEAR-3 payloads directly measured the changes to the vehicle potential caused by both planned argon and unplanned nitrogen releases. The gas releases from positively charged CHARGE-2B consistently reduced the potential to 20–50 V, whereas the gas releases from negatively charged SPEAR-3 brought the potential to between −200 and −500 V. The difference in grounding levels for positively and negatively charged payloads suggests that the gas responsible for grounding is near the vehicle, within a small fraction of the sheath size.  相似文献   

4.
A century ago, Albert Einstein began creating his theory of relativity, the ideas we use to understand space, time, and gravity, and he took some of the first steps towards the theory of quantum mechanics, the ideas we use to understand matter and energy. Time magazine named Einstein the “Person of the Century” because his ideas transformed civilization. But his work is not finished: spacetime is not yet reconciled with the quantum. Einstein’s general theory of relativity opened possibilities for the formation and structure of the Universe that seemed unbelievable even to Einstein himself but which have all been subsequently confirmed: that the whole Universe began in a hot, dense Big Bang from which all of space expanded; that dense matter could tie spacetime into tangled knots called black holes; and that “empty” space might contain energy with repulsive gravity. Despite these discoveries, we still do not understand conditions at the beginning of the Universe, how space and time behave at the edge of a black hole, or why distant galaxies are accelerating away from us. These phenomena represent the most extreme interactions of matter and energy with space and time. They are the places to look for clues to the next fundamental revolution in understanding – Beyond Einstein.  相似文献   

5.
The design and operation of a high altitude scientific balloon requires adequate knowledge of the thermal characteristics of the balloon to make it safe and reliable. The thermal models and dynamic models of altitude scientific balloons are established in this paper. Based on the models, a simulation program is developed. The thermal performances of a super pressure balloon are simulated. The influence of film radiation property and clouds on balloon thermal behaviors is discussed in detail. The results are helpful for the design and operate of safe and reliable high altitude scientific balloons.  相似文献   

6.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   

7.
大型低温抽气技术是大型空间环境试验中获得真空的主要手段,在真空科学与技术中是发展最快的一项技术,文章对大型低温抽气技术的原理和理论计算方法进行了研究探讨,并利用改进和计算方法对KM6大型空间环境试验设备中的低温抽气设备进行了理论计算和优化设计,取得了满意的结果。  相似文献   

8.
The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics.  相似文献   

9.
Over that past twelve years, global long duration balloon (LDB) missions have provided scientists an observation platform that offers tremendous opportunity for accomplishing monumental science. The precedence of several years of highly successful LDB missions and the capability to recover and re-fly such instruments within a relatively short period of time has created even greater demands for serving science missions in 2004 and beyond. To address NASA’s strategic plans for more missions and longer durations, new concepts are being explored and some are currently being developed, in order to enhance the current LDB mission concept.  相似文献   

10.
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth’s atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.  相似文献   

11.
This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs “Total solar eclipse 1999 and 2006” (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 – Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133–137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR–Terrestrial Influences, Sofia, November 24–25, pp. 69–72, 2005).  相似文献   

12.
The efforts in scientific ballooning in India have always been focussed towards continuous upgrading of capabilities in all aspects of balloon flights - balloon material, balloon fabrication, launch techniques, heavy payload launch, telemetry, telecommand and other ground facilities - to meet the growing demands of the scientific community. A brief account of recent progress in several of these aspects and future plans for further improvements in scientific ballooning capability is presented.  相似文献   

13.
Over 500 small scientific balloons have been launched by the University of Wyoming's Atmospheric physics Group from 26 locations over the globe in a study of stratospheric aerosol physics and chemistry which began in 1971. These flights have led to a basic understanding of the evolution of sulfurous gases, injected into the stratosphere by major volcanic eruptions, into sulfuric acid aerosol droplets. The recent use of new, thin film balloon technology, to reduce cost and simplify launch techniques, has been a major advantage to the program.  相似文献   

14.
A review of the four-channel teleradiometer “Micron” calibration and data processing techniques has been presented. The sensor validation of the space-borne teleradiometer “Micron” was based on the following: the preflight absolute calibration with the state certificated standard, the secondary onboard standard (miniature filament lamp), the inflight measurements of the Moon's brightness. The procedure of the extinction coefficient determination from the daytime horizon profiles has been developed. The validity of the used techniques was estimated by carring out model calculations. An optimal measuring procedure has been recommended. The proposed simple techniques are used for processing the space measured horizon brightness data. The results have been compared with the earlier published ones.  相似文献   

15.
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details.  相似文献   

16.
The United States has begun the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency. The planned uses of the facility encompass a broad spectrum of research disciplines including life sciences, material sciences, astrophysics, earth sciences and planetary sciences. Activity has already started on the preparation of scientific proposals, and in some cases on specific pieces of instrumentation, in many of these areas. Long-duration, continuous research in space in a manned facility presents situations, problems and opportunities which have never before needed to be addressed. This paper presents current thinking in the United States on several of these issues related specifically to the microgravity sciences and an initial paradigm for their solution.  相似文献   

17.
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights.  相似文献   

18.
Magnetic Clouds (MCs) are the interplanetary manifestation of Coronal Mass Ejections. These huge astrophysical objects travel from the Sun toward the external heliosphere and can reach the Earth environment. Depending on their magnetic field orientation, they can trigger intense geomagnetic storms. The details of the magnetic configuration of clouds and the typical values of their magnetohydrodynamic magnitudes are not yet well known. One of the most important magnetohydrodynamic quantities in MCs is the magnetic helicity. The helicity quantifies several aspects of a given magnetic structure, such as the twist, kink, number of knots between magnetic field lines, linking between magnetic flux tubes, etc. The helicity is approximately conserved in the solar atmosphere and the heliosphere, and it is very useful to link solar phenomena with their interplanetary counterpart. Since a magnetic cloud carries an important amount of helicity when it is ejected from the solar corona, estimations of the helicity content in clouds can help us to understand its evolution and its coronal origin. In situ observations of magnetic clouds at one astronomical unit are in agreement with a local helical magnetic structure. However, since spacecrafts only register data along a unique direction, several aspects of the global configuration of clouds cannot be observed. In this paper, we review the general properties of magnetic clouds and different models for their magnetic structure at one astronomical unit. We describe the corresponding techniques to analyze in situ measurements. We also quantify their magnetic helicity and compare it with the release of helicity in their solar source for some of the analyzed cases.  相似文献   

19.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges in scientific balloon technologies. After reaching the highest record setting balloon altitude of 53.0 km using the 3.4 μm film in 2002, we tried to make a thinner balloon film. In 2003, we developed a forming die and an air-ring and succeeded in forming a film with a thickness of 3.0 μm and a width of 220 cm. Using this film, we manufactured a balloon with a volume of 5000 m3 and succeeded in flying the balloon up to an altitude of 46.0 km. We then searched for a good combination of resins to make a thinner and wider film and obtained films with widths of 280 cm, and a thickness of 3.0 μm at first, and then 2.8 μm. In 2004, we performed balloon experiments making a 30,000 m3 balloon with the 3.0 μm film and a 5000 m3 balloon with the 2.8 μm film. Both balloons were well manufactured and reached the highest altitudes of 50.7 and 42.6 km, respectively.  相似文献   

20.
一种带大挠性附件卫星的低阶鲁棒控制方法   总被引:1,自引:0,他引:1  
针对带有大挠性附件卫星存在参数不确定性和外部扰动的问题,提出一种基于线性矩阵不等式(LMI)的鲁棒H∞反馈控制方法.在卫星动力学模型中考虑了太阳帆板对日定向转动及天线展开过程中参数的摄动问题,进一步设计适用于线性参数时变(LPV)系统的多输入多输出(MIMO)反馈控制器,证明闭环系统在参数大范围摄动下的鲁棒稳定性.相比经典控制方法,当结构参数变化较大且三轴姿态为动态时变时,在满足期望性能指标的同时,可以有效地抑制挠性附件的振动且具有较强的抗扰能力.最后通过仿真验证了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号