首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Observations of radio emissions in the frequency range of 2 to 3 kHz have been made in the distant heliosphere by the Voyager 1 and 2 plasma wave instruments. Based primarily on wideband observations made periodically throughout the cruise phases of the missions the radio emission, first observed in 1982, appears to have been present almost continuously since 1983. The spectrum is complex, usually showing two peaks, one near 2 and another near 3 kHz. Occasionally, only one of the peaks is observed. A possible source for the radio emissions is the terminal shock in the outer heliosphere.  相似文献   

2.
Ion flows from the ionosphere into the magnetosphere fall into two main categories: cold (<1eV), “classical” polar wind and heated (>1eV), suprathermal ion outflows. A wealth of new understanding of these outflows has resulted from the Dynamics Explorer Mission. This review describes both the confirmation of the predicted classical polar wind as well as the revelation of a great variety of low-energy suprathermal outflows: the cleft ion fountain, the nightside auroral fountaion (X-events, toroids and field-aligned flows) and polar cap outflows. The main emphasis is placed on flows at energies below about 50eV, observed by the Retarding Ion Mass Spectrometer (RIMS) on board the Dynamics Explorer 1 satellite; limited comparisons are made with results from other instruments which sample different energy ranges.  相似文献   

3.
4.
Impulsive plasma waves (1–9 kHz) with durations less than 100 msec have been found in DE-1 wide-band electric field data (650 Hz – 40 kHz) received at Kashima, Japan. The waves are associated with a strong narrow-band ELF hiss, and were observed at geocentric distances from 3.1 to 4.9 Re (earth's radius) in the low-latitude nightside magnetosphere. Local electron densities and plasmapause locations estimated suggest that the waves were observed outside the nightside plasmapause. The waves are discussed in terms of Landau resonant trapping of magnetospheric electrons by the associated whistler-mode ELF hiss.  相似文献   

5.
The Plasma Science experiment on Voyager 2 detected a magnetosphere filled with a tenuous plasma, rotating with the planet. Temperatures of the plasma, composed of protons and electrons, ranged from 10 eV to ∼1 keV. The sources of these protons and electrons are probably the ionosphere of Uranus or the extended neutral hydrogen cloud surrounding the planet. As at Earth, Jupiter, and Saturn, there is an extended magnetotail with a central plasma sheet. Although similar in global structure to the magnetospheres of these planets, the large angle between the rotation and magnetic axes of the planet and the orientation of the rotation axis with respect to the solar wind flow make the Uranian magnetosphere unique.  相似文献   

6.
The sounding rocket POLAR 5 carried a 10 keV electron accelerator and various diagnostic instruments in a mother-daughter configuration. Onboard wave receivers recorded several types of VLF wave phenomena directly associated with the operation of the accelerator, with delays from 5 to 50 ms after the injection of the electrons. These delayed after-effects range from broadband noise, f > 3 kHz, observed above 170 km, through narrow band emissions at 2 and 5.6 kHz which appeared when the rocket crossed a region with precipitation of energetic electrons, to emissions covering frequencies from 3–4 to well above 100 kHz observed within the E-region (150-95 km). The latter was also associated with apparent changes in electron density. The observed emission properties indicate that the region perturbed by the beam and the neutralizing return current to the daughter may be a favoured generation region.  相似文献   

7.
The stimulated plasma wave experiment (SPW) has been successfully carried out in the plasmasphere and the magnetosphere along the JIKIKEN (EXOS-B) satellite orbit where the plasma parameters indicate wide variety of the combination of the electron number density, ranging from 1/cc to 104/cc, and the electron cyclotron frequency, ranging from 6 kHz to 200 kHz.The upper hybrid resonances FUHR usually persists for long periods up to 125 msec and the electron cyclotron resonances nFH are stimulated at frequencies with the very high harmonic number n; sometimes, the nFH resonance takes place for n=47.All the features of the resonances including FOn reflect the characteristics of the magnetospheric plasma that contains the energetic and non-Maxwellian components of the particles. The measurement of the plasma resonance contributes to the detection of the local electron density and the magnetic field intensity. The mode of the propagating radio waves is also determined being compared with the observed local plasma resonance frequency Fp.  相似文献   

8.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

9.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

10.
Access of low energy cosmic rays to any position on the Earth depends on the state of the magnetosphere. Anisotropy of cosmic rays, deduced from the neutron monitor network, must assume the variable transmissivity of the magnetosphere especially during the geomagnetic disturbances. We illustrate that computations based on different available models of geomagnetic field during selected strong geomagnetic disturbances in 2003 and 2004 imply different profiles of cut-off rigidities in time, different transmissivity functions and different asymptotic directions. Using of cosmic ray records by neutron monitors at middle and low latitudes during geomagnetically active periods, in addition to cosmic ray anisotropy in interplanetary space deduced from high and low energy cosmic ray ground based measurements, may be used for checking validity of geomagnetic field models.  相似文献   

11.
The earthward displacement of the magnetopause observed during a southward IMF (or the magnetopause erosion) and its dependence on the solar wind plasma and magnetic field parameters is studied by investigating data of about 30 magnetopause crossings by the ISEE 1 and 2 spacecraft. It is shown that the magnetopause erosion may be explained by a depression of the magnetic field intensity in the dayside magnetosphere caused by the penetration of the magnetosheath magnetic field (component perpendicular to the reconnection line) into the magnetosphere. The penetration coefficient (the ratio of the intensity of the penetrated field to the intensity of the magnetosheath magnetic field) is estimated and found to equal approximately 1.  相似文献   

12.
A critical appraisal is made of the hypothesis that power-line harmonic radiation can influence the Earth's radiation belts by triggering intense magnetospheric emissions which in turn resonantly scatter trapped electrons into the atmospheric loss cone. While such triggering may indeed occur, a combination of theoretical arguments supplemented by an indepth analysis of OGO-5 satellite data is employed to show that triggered waves comprise at best a small fraction of the total magnetospheric wave population. Previous claims to the contrary have been either based on erroneous statistical arguments or biased by the limited sample of ducted waves detectable by ground based receivers. The totality of satellite data is consistent with a predominantly natural origin for the two classes of electromagnetic waves (chorus and plasmaspheric hiss) which are known to interact strongly with energetic radiation belt electrons.  相似文献   

13.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

14.
In one type of space weather, the sun emits intermittent enhancements of solar energetic particle (SEP) fluxes. A fraction of these fluxes that reach the envelope of geospace can be injected into the magnetospheric particle confinement region after transiting the geomagnetic tail domain, the polar cleft/cusp region, or directly through the front side magnetopause. Common for these processes is that they provide inward diffusive “leakage” whenever the immediate external flux environment is more intense than in the outer trapping region. Conversely, following injection events outward leakage can also occur whereby the confinement region becomes a source of Magnetosheath particles. Numerical modeling has been carried out to investigate the effects on the ambient fluxes in the Earth's radiation belts from this effect.  相似文献   

15.
The solar corona, modelled by a low β, resistive plasma slab sustains MHD wave propagations due to footpoint motions in the photosphere. The numerical simulation presents the evolution of MHD waves and the formation of current sheets. Steep gradients at the slab edges, which are signatures of resonance layers are observed. Singularities are removed by the inclusion of finite resistivity. The fast waves develop kink modes. As the plasma evolves the current sheets which provide heating at the edges fragment into two current sheets at each edge which in turn come closer when the twist is enhanced.  相似文献   

16.
Recent data from the ISEE-1 spacecraft indicates that VLF emissions triggered by nonducted coherent VLF waves can differ in important aspects from VLF emissions triggered by ducted VLF waves.  相似文献   

17.
The existence of a multiplicity of models of the Earth's magnetosphere raises the question: when are two of them equivalent in representing the real magnetosphere? The isomorphism of any two models of the Earth's magnetosphere is defined in terms of magnetic field characteristics. To assess to what degree empirical models are isomorphic with physical ones, two magnetospheres are compared: the magnetosphere of Mead and Fairfield [1975] and the physical magnetosphere proposed by Buneman, [1993]. Parameters realizing the isomorphism are found for the Buneman magnetosphere and the distribution in space of magnetic field characteristics are presented for both models.  相似文献   

18.
超低轨道(VLEO)由于其轨道较低,在该轨道运行的航天器在对地观测、科学研究方面具有独特优势,但对该轨道的大气密度变化特性认知不足。在阐述国内外超低轨道大气密度原位探测发展历史及现状的基础上,总结了现有超低轨道大气密度原位探测技术,对中国超低轨道大气密度原位结果进行了初步分析和讨论。结果表明:在2020年10月空间环境平静期,250 km和350 km高度大气密度相差一个量级;升降轨期间,超低轨道大气密度每千米分别下降0.025×10-12 kg/m3和0.041×10-12 kg/m3,均小于模式值的0.5倍;北纬40°时,处于午夜的升轨段(约250 km)大气密度是处于正午的降轨段(约420 km)大气密度的11.2倍,高度的影响大于地方时的影响;不同纬度下,实测日均值和模式日均值的比值从高纬的0.49降为低纬的0.39,模式值偏大。在超低轨道上,实测值总体上比模式值小,可为大气物理研究和应用研究提供基础数据。  相似文献   

19.
Two rocket experiments KOMBI-SAMA with plasma injection at height 100–240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when satellite COSMOS 1809 passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during ≥ 300 s by electric plasma generator separated from the payload. By diagnostic instruments on board of the rocket and the satellite were registered energetic particle fluxes and plasma wave activities stimulated by plasma injection. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by 2 times was registered on board the satellite. An enhancement of energetic particles (E > 40 keV) flux by 4–5 times was registered on board the rocket. Observed ELV emission below 100 Hz is interpreted as generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.  相似文献   

20.
Data are presented from occasions when one of the detectors of the Suprathermal Plasma Analyser on GEOS-2 observed along the magnetic field direction. Electrons were seen with larger fluxes along the field-aligned direction than at 80° to it. One particular class of these events was identified on the night-side when electrons in the energy range 10's to 100's eV were seen. These electrons of ionospheric origin may be associated with suprathermal electron bursts or the permanent power law population of the diffuse auroral zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号