首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
利用中国14个地磁台站和全球23个地磁台站的H分量分钟值数据,分析单台站小时幅度指数rH的时空分布特征,在此基础上结合台站之间rH指数的相似度度量(残差指数Ra),采用K均值聚类算法将中国14个地磁台站划分为7个区域,根据加权法计算各区域的区域指数Rr.结果表明,rH指数具有27天太阳自转周变化,季节变化不显著,但仍存在春秋季大而冬夏季小的特征;在空间变化上,rH随纬度的增高而增大,并且在磁暴期间rH指数的幅值和形态均表现出明显的经度差异,随地方时呈现晨-昏不对称现象;与Dst指数、SYM-H指数、Kp指数及各区域内台站的H分量观测数据对比分析发现,区域指数Rr能有效反映区域地磁扰动.   相似文献   

2.
针对东亚地区地磁低纬度南北半球Vanimo台站(地理2.7°S,141.3°E;地磁11.2°S,146.2°W)和海南台站(地理19.5°N,109.1°E;地磁9.1°N,179.1°W)上空的3个电离层等离子体块与等离子体泡相关联的事件,利用地面台站的电离层测高仪连续观测数据,研究等离子体泡演化期间的电离层虚高变...  相似文献   

3.
"神州三号"(SZ-3)大气成分探测器搭载在SZ-3留轨舱上于2002年3月26日发射入轨,正遇2002年4月发生的连续两次地磁扰动事件,SZ-3大气成分探测器测得了轨道舱运行高度上(330-350 km附近)大气成分的响应变化和异常现象.探测数据表明,在地磁扰动期间,不仅发生了大气中主要成分O和N2的数密度值增变的响应变化,而且在进入地磁扰动峰期开始后6h左右在较高纬度处出现了N2的异常增变和O的异常降变.4-5h后,这种异常增变峰和降变谷由纬度42°N左右逐渐推移向纬度较低地区,直至消失.  相似文献   

4.
在评估国际常用Kp指数现报模式Takahashi及其应用于中国地磁台站效果的基础上,提出了一种改进的地磁Kp指数现报模式,其可以有效识别地磁规则日变化的逐日变化特性,反映地磁扰动的季节效应和地方时效应,从而提升了Kp指数现报的准确性.采用Takahashi模式开发时所使用的台站数据进行对比,新模式将单站地磁Kp指数现报效率由0.77提升至0.84,多站联合Kp指数现报效率由0.88提升至0.92;采用2000—2006年北京十三陵台站(BMT,磁纬29°N)数据进行评估,Kp指数现报效率由0.70提升至0.80.对Kp指数现报结果的误差分析发现,现报误差存在明显的地方时差异和一定的季节差异,误差随扰动强度变化并在中强磁扰时最大.利用SuperMAG的指数分析表明,Kp台站的经度不均匀分布会对现报效果造成一定影响.  相似文献   

5.
强磁暴产生的地磁感应电流是诱发电力系统灾害性事故的关键因素,预防与控制地磁感应电流的必要途径是评估其在系统中的水平.掌握磁暴感应地电场的时空分布是评估所在区域电网地磁感应电流的基础,可为研究与防治电网磁暴灾害提供参考.在中国现有稀疏分布的地磁台观测数据基础上,建立了电离层等效球面元电流系统模型,并将其与复镜像法结合,建立了磁暴感应地电场和地磁场的计算模型.利用磁暴期间实测的地磁台站数据进行了计算,算例结果与平面波理论计算结果的对比证明了算法的正确性与有效性.计算结果可直接应用于电力系统的地磁感应电流计算,为分析电力系统磁暴灾害风险提供参考.   相似文献   

6.
地磁基准图的构建是实现地磁匹配导航的基石。针对实测数据量较小时利用插值法构建的地磁基准图精度不理想的问题,将压缩感知理论应用到地磁信息采集中。结合地磁基准图的结构特点设计了以离散余弦变换作为稀疏基、单位矩阵作为观测矩阵,以压缩采样匹配追踪(CoSaMP)算法作为重构算法的基于压缩感知的高精度地磁基准图构建方法,并与三次样条插值、Kriging插值及PSO-Kriging插值法进行对比。实验结果表明:所提方法具有较高的重构精度和稳定性,与性能最好的PSO-Kriging插值法相比,在6.25%采样率下重构地磁基准图,所提方法使得峰值信噪比(PSNR)由66.97 dB提高至74.67 dB,绝对误差由25.47 nT减小至10.26 nT,均方根误差由28.57 nT减小至11.33 nT。   相似文献   

7.
统计研究漠河、北京、武汉流星雷达观测到的2012-2018年80~100 km高度的风场数据,比较在地磁平静期(Kp≤2)和地磁扰动期(Kp≥4)的日平均风场数据,得到在地磁活动期风场的变化特征。研究结果表明,在地磁扰动时风场变化具有季节差异和纬度差异。地磁扰动期间,纬向风在较高纬度地区倾向于中间层西风增强,低热层东风增强,纬度较低地区倾向于东风增强。春季,地磁活动对纬向风的影响没有纬度差异,在夏冬季随着纬度的降低中间层东风增强明显。地磁活动对经向风的影响具有季节差异,对春冬季节的影响强于夏秋季节。研究表明,地磁活动对纬向风的影响可达9 m·s–1左右,对经向风的影响可达5 m·s–1左右。地磁活动对中性大气风场的影响可达80 km。  相似文献   

8.
地磁场与电离层异常现象及其与地震的关系   总被引:33,自引:2,他引:31  
利用中国地磁台网与电离层台站资料,总结了大地震前出现的地磁低点位移、地磁日变异常及电离层f0F2(F2层临界频率)异常现象.对比研究了1997年11月8日玛尼7.5级与2001年11月14日昆仑山口西8.1级地震前磁场与电离层异常分布及特征.结果显示,两次巨大地震前磁场与电离层短临异常时空分布特征有较好的一致性,震中周围出现日变异常、拉萨台出现电离层f0F2明显异常;震前约1个月出现地磁低点位移,其突变分界线通过震中地区.   相似文献   

9.
传统经验大气密度模式预测大气密度存在的较大误差会引起低轨卫星轨道预报误差,对卫星的再入轨、控制计划、碰撞规避及精密定轨造成不利影响.利用天宫一号卫星探测数据,针对大气NRLMSISE-00模式计算的误差特点,在地磁相对平静(Ap ≤ 30)的时间段内,对相近地方时和纬度的模式误差分布进行分析发现,相近地方时和纬度的模式误差分布基本相同.利用二维核回归估计方法,对与预测点相近地方时和纬度的样本误差进行加权,估计预测点处的模式误差,进而按距离预测日期天数的长短,采用加权修正法对模式预测结果进行修正,修正后大气模式误差的均方差(RMS)由14.09%降至4.05%.研究结果表明,该修正方法可以显著提高大气密度预报精度.   相似文献   

10.
地磁图制备方法及其有效性评估   总被引:2,自引:0,他引:2  
高精度地磁图制备是地磁匹配导航关键技术之一.在简单介绍4种网格插值方法原理的基础上(反距离加权插值法、克里金插值法、改进的谢别德插值法以及径向基函数法),应用实测地磁数据,选取测点分布较均匀区域,根据上述插值方法分别制备地磁图,并通过交叉验证统计准则对地磁图制备方法的有效性进行评估.结果表明,径向基函数插值法制备的地磁图"鸭蛋"形分布较少,地磁图等值线较圆滑,其标准偏差远小于其它方法的标准偏差,且其标准误差以及平均偏差也最小,具有较高的插值精度,能更好地反映该区域地磁场分布情况.  相似文献   

11.
利用武汉、广州、泉州和琼中等4个低纬地磁站连续多年的地磁资料,计算了各月5个磁静日Z分量日均值与中午1100---1300时段平均值之差(Dz),对每年12个Dz采用多元回归分析方法,得到各年的半年变化幅度和相位.结果表明:4个站的Dz每年都有半年变化现象;半年变化幅度与太阳活动有关,一般来说,太阳活动高年Dz半年变化幅度明显大于太阳活动低年;太阳活动本身的半年变化,对Dz半年变化幅度有显著的调制作用;Dz半年变化的相位在3—4月(或9—10月),即极大值出现在分季;低纬地区地磁Z分量存在显著的半年变化,能够反映赤道电急流也有明显的半年变化,这再一次证明,赤道电急流幅度的半年变化,通过“喷泉效应”使得电离层,f0F2产生半年变化,其是产生,f0F2半年变化的一个主要因素.  相似文献   

12.
研究了WAAS卫星导航系统的格网电离层改正方法,分析了中国区域电离层分布特性,根据中国区域内稀疏布站的条件,MEO卫星和GEO卫星运动特点,以及C波段GEO卫星电离层延迟特性,提出了利用距离幂指数权重内插进行电离层延迟改正的方法。使用IGS公布的电离层数据,分别利用格网电离层权重方法和距离幂指数权重内插法进行Matlab仿真计算。然后,将结果与IGS事后精密产品进行比较,证明在中国区域内稀疏布站条件下,距离幂指数权重内插法对于电离层延迟具有较理想的改正效果。  相似文献   

13.
14.
Space Time-Index(STI)方法是一种验证时间序列中是否存在非平稳性的图示方法. 利用改进的STI方法可以定量分析外源磁场垂直分量z的非平稳性特征. 以不同地磁指数(K=0,2,4,6)、不同Lloyd季节和昼夜外源磁场z分量为对象进行对比分析. 结果表明,改进的STI方法能够有效检验外源磁场的非平稳特性,且z分量为非平稳时间序列;不同K指数的z分量分析表明,随着K指数的增加,z分量的相空间分布越来越不均匀,时间演化特征越来越复杂;不同Lloyd季节的分析表明,各季节的STI图较为相似,但随着日地距离的减小,z分量时间演化特征的复杂性增强,呈现出一定季节变化特征;对昼夜变化的分析可知,夜晚z分量STI图的波动性比白天要强,昼夜变化特征较为明显.   相似文献   

15.
This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French–Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D’Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.  相似文献   

16.
杜雯  黄河  周军 《空间科学学报》2022,42(6):1193-1203
以SWARM为代表的高精度地磁测量卫星对地球磁场探测精度经过标定之后优于0.5 nT,对于开展地磁科学研究具有重要意义。地磁测量卫星通过安装在伸展杆上的矢量磁通门磁强计、标量磁强计和高精度星敏感器,获取测量方向的惯性空间姿态的地磁信息,其中高精度标量磁强计主要用于对磁通门矢量磁强计进行标定。针对地磁测量卫星,研究了矢量磁强计在轨测量误差的校正方法。考虑到矢量磁强计非正交角、标度因子以及偏差的影响,建立磁场矢量线性输出模型;结合标量磁强计的测量值分别设计基于小量近似的线性校正算法和基于参数辨识更新的非线性校正算法;校验两种算法的标定精度,并通过Tukey权重函数改善算法的鲁棒性。仿真结果表明,两种算法校正结果相似,磁场三轴误差可校正至0.5 nT以内,在标量磁强计存在异常值时仍具有较好的校正效果。   相似文献   

17.
下一代地磁导航等空间任务对地球磁场测量卫星提出了迫切的需求, 高精度地磁场测量卫星需要极高的姿态测量精度和空间剩磁环境, 对星敏感器提出了新的要求。针对这一需求, 研究了低剩磁高精度星敏感器的改进设计方法。采用三视场分体结构设计,提高了数据更新率,通过数据融合提高了姿态确定精度,同时对光学头部进行了精细化降剩磁设计。仿真和测试结果表明,改进的星敏感器设计方法能够实现较低的剩磁和较高的定姿精度, 满足地磁场测量卫星的应用需求, 具有较高的应用价值。  相似文献   

18.
基于实时观测数据的大气密度模式修正   总被引:1,自引:0,他引:1  
针对国际大气密度模式NRLMSISE-00, 以中国神舟飞船探测数据为基础, 提出一种基于实时大气密度观测数据的模式修正方法. 通过计算分析模式计算结果与探测数据的误差分布特征, 针对地磁相对平静期(Ap≤ 30)模式计算的误差特点, 建立了一种平均误差修正方法, 即认为在相对平静期, 在相同纬度和地方时, 模式误差基本相同, 某一时刻模式预测误差可以近似用与其相同纬度和地方时的平均误差来替代, 从而对模式预测结果进行修正. 以神舟4号探测数据为基础, 通过对模式预测结果采用两种方式进行修正, 可以看到模式误差得到了一定的改善. 采用误差库累积准实时修正, 修正后的误差由原来的20 %降至6 %; 采用误差库5天滑动预报修正后, 模式提前1, 2, 3天的预测误差由原来的20 %分别降至7.8 %, 9.4 %和10.5%.   相似文献   

19.
本文给出了1983-1985年磁暴期间,我国乌鲁木齐等七个站及日本国分寺等五个站出现微粒E层的情况;得到了微粒E层的日变化、月变化和纬度变化;结合同时的地磁、宇宙线、TEC和电离层的变化,对微粒E层出现率作了分析。初步证实:微粒E层的形成和维持与赤道环电流指数(Dst)负变幅大小密切相关,此外还同宇宙线的FD(Forbushdecreases)事件的出现有关。作者认为,沉降粒子可能是低纬地区微粒E层事件的主要粒子来源。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号