首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A preliminary model is proposed to describe quantitatively the position and movement of cusp equatorward boundary. This integrated model, consisting of an empirical model of the magnetopause and a compressed dipolar model of Open/Closed field line, connects quantitatively the solar wind conditions, subsolar magnetopause and cusp equatorward boundary. It is shown that the increasing solar wind dynamic pressure and the increasing southward Interplanetary Magnetic Field (IMF) component drive the magnetopause to move inward and the cusp equatorward. This model is adopted to interpret quantitatively the cusp movement of August 14, 2001 observed by Cluster. The results show that the subsolar magnetopause moved earthward from 10.7 He to 9.0 Re during the period of 002300-002800 UT, and correspondingly the cusp equatorward boundary shifted equatorward. The observations of Cluster C1 and C4 show the cusp equatorward boundary that Cluster Cl and C4 were crossing during same interval moved equatorward by 4.6°. The cusp equatorward boundary velocity computed in the theoretical model (10.7km/s) is in good agreement with the observed value (9.4km/s) calculated from the data of CIS of Cluster C4 and C1.  相似文献   

2.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

3.
大尺度场向电流的控制因素   总被引:2,自引:0,他引:2       下载免费PDF全文
将ISEE-1和ISEE-2飞般测量的地球内磁层场向电流作为行星际磁场与极区地磁活动水平(由AL表征)的函数。发现大约75%的场向电流发生在行星际磁场南向时,其余25%发生在行星际磁场由南向转到北向的半小时内。而且,发生在AL〈-150nT的场向电流也大约是75%。场向电流的强度和密度随行星际磁场南向分量及AL的负值增加而增大。由此而得出结论,内磁层场向电流的产生主要是由行星际磁场控制的,是太阳风  相似文献   

4.
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

5.
6.
Times of sustained strong northward IMF can interrupt the magnetic storm development and lead to lower levels of geomagnetic activity for many hours. During 1997–2000 we have found two events of this kind observed on November 8, 1998 and October 13, 2000. In both cases, the storms started as usual after arrival of ejecta with a southward IMF component from the Sun to the Earth, but ceased after several hours due to the onset of sustained northward IMF leading to the faster recovery process. After the passage of this so-called positive domain, the storm development started again. The heliospheric magnetic field intensity remained enhanced and nearly constant. The solar origins of the geomagnetic storm interruptions have been investigated. Tentatively they may be related to strong nonlinear Alfvйn type solitary waves excited by non-stationary coronal current variations with a characteristic time-scale of about a day.  相似文献   

7.
Plasma and energetic particles pressure distribution is studied using data from the plasma and energetic particle experiment (0.1 –133 keV) onboard the Gorizont-35 geostationary satellite for the period from 11 to 25 March 1992. The analysed period consists of relatively quiet time, small geomagnetic storms, SC and the time of the northern orientation of the IMF. The calculations show that the basic contribution to the total particle pressure was made by ions at the energy from 0.1 to 12.4 keV. The derived average value of the calculated pressure (≈1 nPa) points to the important role of the geostationary orbit plasma population in the formation of the magnetopause pressure balance and of the near-Earth magnetic field distortion.  相似文献   

8.
磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。   相似文献   

9.
Pc 5 ULF waves are seen concurrently with the rise in radiation belt fluxes associated with CME magnetic cloud events. A 3D global MHD simulation of the 10–11 January, 1997 event has been analyzed for mode structure and shown to contain field line resonance components, both toroidal and poloidal, with peak power on the nightside during southward IMF conditions. A mechanism for inward radial transport and first-invariant conserving acceleration of relativistic electrons is assessed in the context of ULF mode structure analysis, and compared with groundbased and satellite observations.  相似文献   

10.
A coherent data set of high-latitude dayside magnetopause encounters by old (Heos 2, Hawkeye, Prognoz 7, 8) and new (Polar, Interball Tail, Cluster) spacecraft is needed to build a realistic model of the magnetopause (MP) including an indentation in the cusp. In building such a coherent data set a caution is necessary as the dayside magnetopause at high-latitudes may be less clearly defined than in the case of observations at low latitudes. It is due to expected presence of bundles of newly-reconnected magnetic field lines forming an extended boundary layer on the magnetosheath (MS) side of the magnetopause in the cusp region. Moreover, numerical magnetohydrodynamic (MHD) models of the solar wind-magnetosphere interaction predict that under northward interplanetary magnetic field (IMF) an additional thin current sheet should form inside the magnetopause at high latitudes on the dayside (e.g., Wu, 1983; Palmroth et al., 2001). Such a thin currect sheet is absent in empirical magnetosphere models. This internal current sheet, if a real one, may be mistaken for the magnetopause if magnetic field data are only taken into account and/or plasma data are unavailable. The Interball-Tail orbit allows for a full transition of magnetopause boundary layers at high-latitudes. We compare plasma and magnetic field signatures of the magnetopause poleward of the cusp for southward and northward IMF. The distance between the magnetic signature of the magnetopause (the current layer) and a cold and laminarly antisunward flowing MS plasma (so called free-flow MS) was found to be 0.5 to 1 RE, at least. These observations were made under nominal solar wind of v350 km/s and pdyn=1 to 4 nPa. We also observed several transient magnetic field reversals in the cusp related to pulses of solar wind dynamic pressure and/or the IMF discontinuity arrival. These transient reversals occurred at the same distance to the model MP as well defined full MP crossing, so most probably they represent just short encounters with the magnetopause current layer. Our analysis suggests that an indentation of the magnetopause with a subtle structure dependent on the local magnetic shear would explain and allow to predict the magnetic configuration in the high-altitude cusp.  相似文献   

11.
利用KRM地磁反演方法, 结合北半球中高纬度地磁台站数据, 研究了2004年12月13日行星际磁场北向期间发生的亚暴事件, 极区电离层电动力学参量(电流矢量、等效电流函数以及电势)的分布特征. 结果表明, 在该亚暴膨胀相起始后, 午夜之前西向电集流急剧增强, 且等效电流体系表现为夜侧双涡, 同时伴随夜侧增强的南向电场. 由于极弱的直接驱动过程, 卸载过程引起的电离层效应得到清楚显示. 卸载过程在膨胀相期间起绝对主导性作用. 同时, 夜侧电导率的增强是电集流区域电流急剧增强的主要原因.   相似文献   

12.
利用卫星和地面台站的历史数据, 研究了中低纬电离层f0F2 对强行星际磁场南向翻转的响应. 结果表明, 行星际磁场南向翻转能引起电离层扰动式响应, 响应特性与纬度、季节和翻转时刻的地方时有关. 在中纬, 发生在夏分季和夜间的翻转能造成较强的电离层负响应, 其幅度随纬度的降低而变弱, 在恢复过程中存在不规则振荡; 在低纬, 南向翻转引起的电离层响应在夏分季较强, 在冬季则较弱, 且易被淹没在电离层自身的扰动中. 分析指出电离层最大负响应与翻转后南向磁场极大值之间有着较好的线性关系.   相似文献   

13.
利用全球磁流体力学(MHD)模拟结果,通过确立包含磁层顶的太阳风流线内边界来识别三维磁层顶位形,并以极尖区位置作为磁层顶日侧与夜侧的分界线,在此基础上定量研究了不同条件下穿过磁层顶向磁层内输入的电磁能量. 研究发现,磁层顶的能量传输与太阳风条件密切相关,磁重联是控制电磁能量传输的重要机制. 结果表明,当IMF(行星际磁场)南向时,极尖区后方的磁尾附近存在电磁能输入最大值,当IMF北向时,电磁能输入最大值发生在极尖区附近;南向IMF条件下,在IMF强度增大或太阳风密度增大时,磁层顶电磁能传输的电磁能量比北向IMF条件时增加更显著. 太阳风通过调节磁层顶面积间接影响到磁层顶能量传输大小. 研究还发现,北向IMF与南向IMF条件下穿过磁层顶的电磁能输入的比值范围约为10%~30%,此比值一定程度上反映了北、南方向IMF与地磁场磁重联效率的比值.   相似文献   

14.
Application of an MHD simulation to the study of substorms   总被引:1,自引:0,他引:1  
The substorm mechanism is studied by the numerical solutions obtained from a resistive magnetohydrodynamic (MHD) simulation. After a southward turning of the interplanetary magnetic field (IMF), the simulation results reproduce observed features of the growth phase. The numerical solutions show that the plasma sheet thinning during the growth phase is formed under the dynamic balance between the flux pileup from the midtail and the flux removal toward the dayside controlled by the convection in the magnetosphere-ionosphere (M-I) coupling system. After the growth phase, dipolarization is generated in the near-earth tail accompanied by a plasma injection into the inner magnetosphere, the formation of plasmoid in the midtail, and the enhancement of the nightside field-aligned currents (FACs). The direct cause of this onset is the state (phase space) transition of the convection system from a thinned state to a dipolarized state associated with a self-organization in the nonlinear system.  相似文献   

15.
The POLAR and INTERBALL-AU spacecrafts magnetic field experiments allow investigation of the time-spatial variation of field-aligned current structures at mid and high altitudes. The study includes two intervals over north high latitudes in the dusk magnetosphere: (1) 10 January 09 – 11 UT (consecutive transits) and (2) 11 January, 03 – UT (nearly conjugate situation at 04:30 UT). By using both spacecraft, the identification of current regions is more confident. On January 11 cycles of the polarization reversal of small-scale disturbances in the poleward portion of region R1 have been detected at high and mid altitudes.  相似文献   

16.
A long-standing mystery in the study of Field-Aligned Currents (FACs) has been that:how the currents are generated and why they appear to be much stronger at high altitudes than in the ionosphere.Here we present two events of magnetotail FACs observed by the Magnetospheric Multiscale Spacecraft (MMS) on 1st July and 14th July 2016,to show how the Substorm Current Wedges (SCW) were formed.The results show that particles were transferred heading towards the Earth during the expansion phase of substorms. The azimuthal flow formed clockwise (counter-clockwise) vortex-like motion,and then generated downward (upward) FACs on the tailward/poleward side of the distorted field with opposite vorticity on their Earthward/equatorward side.We also analyzed the Region 1 FACs observed by the Earth Explorer Swarm spacecraft on 1st July 2016 and found that they were associated with FACs observed by MMS,although differing by a factor of 10.This difference suggests that either there was the closure of the currents at altitudes above 500 km or the currents were not strictly parallel to B and closed at longitudes away from where they were generated.   相似文献   

17.
This paper presents a brief summary of our recent work based on global MHD simulations of the Solar wind-Magnetosphere-Ionosphere (SMI) system with emphasis on the electrodynamic coupling in the system. The main conclusions obtained are summarized as follows. (1) As a main dynamo of the SMI system, the bow shock contributes to both region 1 Field-Aligned Current (FAC) and cross-tail current. Under strong interplanetary driving conditions and moderate Alfven Mach numbers, the bow shock's contribution may exceed more than fifty percent of the total of either region 1 or cross-tail currents. (2) In terms of more than 100 simulation runs with due southward Interplanetary Magnetic Field (IMF), we have found a combined parameter f = EswPswMA-1/2 (Esw, Psw, and MA are the solar wind electric field, ram pressure, and Alfven Mach number, respectively): both the ionospheric transpolar potential and the magnetopause reconnection voltage vary linearly with f for small f, but saturate for large f. (3) The reconnection voltage is approximately fitted by sin3/2θIMF/2, where θIMF is the IMF clock angle. The ionospheric transpolar potential, the voltage along the polar cap boundary, and the electric fields along the merging line however defined they may be, respond differently to θIMF, so it is not justified to take them as substitutes for the reconnection voltage.   相似文献   

18.
During a typical Akasofu-type of substorm, the southward component of IMF Bz is necessary prior to the onset. However, a sudden compression of solar wind, if intense enough, can also sometimes trigger a substorm, and is independent of the IMF orientation. The Akasofu-type substorm and the Impulse-induced substorm may differ in their occurrence mechanism and ground-based observations. This is shown using the initial four substorm events discussed in this paper having distinctly different IMF and sudden impulse conditions. A question then arises is how will these signatures vary when both sudden impulse and a southward component of IMF Bz are present prior to the onset. To account for the same, we analyze two substorm events of 05th April 2010 and 22nd June 2015. The substorm onsets on these days not just coincided with the sudden impulse but also a southward component of IMF Bz was present prior to the onsets. The present study accounts for the similarities and differences among isolated IMF induced substorms, isolated impulse-induced substorms and when both sudden impulse and a southward component of IMF Bz are present. We examined the relative dominance between the two factors in triggering a substorm using ground-based and satellite-based observations. If IMF Bz is near zero, a strong pressure pulse and/or large IMF By can lead to particle precipitation away from the usual midnight. To further ensure whether a pressure pulse or IMF By predominantly influences the substorm onset location, a statistical analysis of isolated substorms will be needed.  相似文献   

19.
利用中国北极黄河站高时间分辨率的三波段全天空成像仪极光观测数据,联合太阳风和行星际磁场等观测,分析了极向运动极光结构(PMAFs)和喉区极光的形成及演化特征.研究发现:一系列PMAFs与喉区极光事件同时出现在观测视野中,其中PMAFs主要发生在日侧极隙区极光卵赤道向边界的极向一侧,沿东西方向分布,点亮后向高纬运动;喉区极光紧靠PMAF一侧发生,从极光卵赤道向边界向低纬延伸,沿南北方向分布,点亮后向高纬偏西方向运动;观测期间PMAFs发生频率高于喉区极光;当PMAFs与喉区极光同时出现时,PMAFs可以与喉区极光几乎同时出现或略晚于喉区极光出现,持续时间较喉区极光短.观测结果表明:与PMAF相对应的磁层顶重联过程和与喉区极光对应的磁层顶凹陷导致的磁重联过程在日侧磁层顶上的相邻区域分别发生,两种极光事件的形成过程相对独立,可能不存在相互触发关系.   相似文献   

20.
利用Cluster卫星的磁场和等离子体探测数据, 研究了行星际磁场(IMF)时钟角(clock angle) Φ和锥角(cone angle) θ对磁尾等离子体片边界层(PSBL)区场向电流发生率的影响. 当时钟角Φ >0时, 磁尾场向电流 的发生率较高, 这表明磁尾场向电流的发生与昏向太阳风条件更为密切; 当 90°<|Φ|<180°时, 场向电流的发生率较高, 这表明 场向电流的发生与南向IMF更为密切. 当锥角θ <30°时(即IMF与 日地连线夹角较小时)场向电流的发生率较低. 而当θ> 30°时, 场向电流在90°<|Φ|<180°的情况下发生率明显增大, 这说明南向IMF情况下, 场向电流发生率明显增大. 但是当|Φ|<90°时 (北向IMF情况下), 尽管θ很大, 场向电流的发生率并未明显增大. 当θ>70°时, 且在140°< < i>Φ<160°的行星 际磁场条件下, 磁尾等离子体片边界层区场向电流的发生率最大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号