首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   

2.
The plasma physics of shock acceleration   总被引:1,自引:0,他引:1  
The notion that plasma shocks in astrophysical settings can and do accelerate charged particles to high energies is not a new one. However, in recent years considerable progress has been achieved in understanding the role particle acceleration plays both in astrophysics and in the shock process itself. In this paper we briefly review the history and theory of shock acceleration, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. We discuss in detail the work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks. We briefly describe some of the outstanding problems that still confront theorists and observers in this field.  相似文献   

3.
Collisionless shocks are loosely defined as shocks where the transition between pre-and post-shock states happens on a length scale much shorter than the collisional mean free path. In the absence of collision to enforce thermal equilibrium post-shock, electrons and ions need not have the same temperatures. While the acceleration of electrons for injection into shock acceleration processes to produce cosmic rays has received considerable attention, the related problem of the shock heating of quasi-thermal electrons has been relatively neglected. In this paper we review the state of our knowledge of electron heating in astrophysical shocks, mainly associated with supernova remnants (SNRs), shocks in the solar wind associated with the terrestrial and Saturnian bowshocks, and galaxy cluster shocks. The solar wind and SNR samples indicate that the ratio of electron temperature, (T e ) to ion temperature (T p ) declining with increasing shock speed or Alfvén Mach number. We discuss the extent to which such behavior can be understood on the basis of waves generated by cosmic rays in a shock precursor, which then subsequently damp by heating electrons, and speculate that a similar explanation may work for both solar wind and SNR shocks.  相似文献   

4.
Computer modeling of test particle acceleration at oblique shocks   总被引:1,自引:0,他引:1  
We review the basic techniques and results of numerical codes used to model the acceleration of charged particles at oblique, fast-mode, collisionless shocks. The emphasis is upon models in which accelerated particles (ions) are treated as test particles, and particle dynamics is calculated by numerically integrating along exact phase-space orbits. We first review the case where ions are sufficiently energetic so that the shock can be approximated by a planar discontinuity, and where the electromagnetic fields on both sides of the shock are defined at the outset of each computer run. When the fields are uniform and static, particles are accelerated by the scatter-free drift acceleration process at a single shock encounter. We review the characteristics of scatter-free drift acceleration by considering how an incident particle distribution is modified by interacting with a shock. Next we discuss drift acceleration when magnetic fluctuations are introduced on both sides of the shock, and compare these results with those obtained under scatter-free conditions. We describe the modeling of multiple shock encounters, discuss specific applications, and compare the model predictions with theory. Finally, we review some recent numerical simulations that illustrate the importance of shock structure to both the ion injection process and to the acceleration of ions to high energies at quasi-perpendicular shocks.  相似文献   

5.
The theory and observational evidence pertaining to particle acceleration by shock waves in astrophysical objects and in space are systematized. Recent works showing observational and theoretical aspects of the problem dealing with shocks in turbulent media are emphasized. The acceleration of particles by shocks in turbulent media is observed in interplanetary space. This acceleration mechanism is of particular interest from the point of view of the origin of cosmic rays, providing the degree form of the spectrum. The index of the spectrum is close to the observable one for galactic cosmic rays. It depends slightly on specific conditions in the acceleration region. Electron and nucleus acceleration in supernova remnants and in radiogalaxies is discussed, and theory and observational data are compared. The theory of particle acceleration by supersonic turbulence is outlined.  相似文献   

6.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

7.
We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.  相似文献   

8.
We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000?μG. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1?mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from ~5?μG to 1?mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a substantial density gradient across the remnant.  相似文献   

9.
Lembege  B.  Giacalone  J.  Scholer  M.  Hada  T.  Hoshino  M.  Krasnoselskikh  V.  Kucharek  H.  Savoini  P.  Terasawa  T. 《Space Science Reviews》2004,110(3-4):161-226
The physics of collisionless shocks is a very broad topic, which has been well studied for many decades. However, there are a number of important issues which remain unresolved. Moreover, there have been new findings, which cast doubt on well-established ideas. The purpose of this review is to address a subset of unresolved problems in collisionless shock physics from a theoretical and/or numerical modeling point of view. The topics which are addressed are: the nonstationarity of the shock front, the heating and dynamics of electrons through the shock layer, particle diffusion in turbulent electric and magnetic fields, particle acceleration, and the interaction of pickup ions with collisionless shocks.  相似文献   

10.
The relatively faint optical and UV emission from non-radiative shock waves provides diagnostics for processes related to cosmic ray acceleration in collisionless shocks. Emission line profiles and intensities can be used to determine the efficiencies of electron-ion and ion-ion thermal equilibration, which influence the population of fast particles injected into the acceleration process. It is found that T e/T p declines with shock speed and that T i is roughly proportional to mass in fast shocks. Important information about cosmic ray precursors may be available, but the interpretation is still somewhat ambiguous. The compression ratios in shocks which efficiently accelerate cosmic rays are predicted to be substantially larger than the factor of 4 expected for a strong shock in a = 5/3 perfect gas, and some limits may be available from observations.  相似文献   

11.
Young pulsars surrounded by supernova remnants can power synchrotron nebulae through the injection of relativistic particles. Inverse Compton scattering by the high-energy electrons and positrons can produce TeV gamma-ray emission strong enough to be detectable by ground-based telescopes. The Crab nebula is the archetypical example of a gamma-ray plerion and was the first detected TeV source. The observed spectrum is consistent with predictions of synchrotron-self Compton models. This paper will review such models for the Crab and other plerions. Inverse-Compton scattering on other soft photon sources, particularly the 2.7K microwave background, may also be detectable in older remnants.  相似文献   

12.
Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.  相似文献   

13.
The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40–50% to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.  相似文献   

14.
The main features of cosmic-ray source models and acceleration processes are reviewed, with special emphasis on the possible observational tests, through both composition analysis and multi-wavelength studies of supernova remnants. Non-linear effects in the context of supernova-induced diffusive shock acceleration are discussed, as well as collective acceleration effects induced by multiple supernova explosions inside superbubbles.  相似文献   

15.
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.  相似文献   

16.
The interaction of cosmic rays with interstellar clouds may produce some of the observed gamma-ray sources. The use of molecular observations to estimate the cloud masses, which are used to derive cosmic-ray fluxes, is reviewed. Molecular diagnostics of high cosmic-ray ionization rates are discussed, and a detailed application of those diagnostics is summarised and presented as evidence that second-order Fermi acceleration is important in old supernova remnants and can produce cosmic rays of too low energy to induce gamma-ray emission.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.Royal Society Jaffé Donation Fellow.  相似文献   

17.
The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.  相似文献   

18.
The most frequent manifestation of synchrotron nebulae is the radio emission emanating from radio galaxies and supernova remnants. In general the synchrotron spectra of these objects do not extend into optical and x-ray domains presumably because the high energy electrons needed to sustain such emission are too short-lived. In fact, we knew of only one class of objects in which synchrotron nebulae are observed at frequencies above the radio, namely Crab-like supernova remnants (SNR). In these instances, a central pulsar is presumed to continually accelerate electrons up to the requisite energies, thus balancing the high synchrotron loss rate. The first part of this talk will discuss the available x-ray observations of these sources as well as some of the difficulties in their interpretation. The last part of the talk will be concerned with a new class of synchrotron nebulae associated with binary star systems.  相似文献   

19.
We discuss the results from a chemical evolution model of the local galactic disk which takes into account stellar yields, lifetimes, remnants, and supernova progenitor masses which depend on the initial metallicity of the collapsing clouds. The detailed evolution of H, He, C, O, Fe, and of the heavy elements (Z) is followed dropping the instantaneous recycling approximation. Our results reproduce the majority of the observational constraints.  相似文献   

20.
I review the observations of galactic synchrotron sources, focusing on shell supernova remnants (SNRs), with particular attention to attributes that constrain the properties of electron acceleration. Radio observations provide information on source fluxes, spectral index, morphology, and polarization. Recent observations give us strong reason to believe that several young SNRs show synchrotron X-ray emission. Even if X-rays are thermal, however, limits can be set on the maximum energy to which electrons can be accelerated without a spectral break, since no galactic SNR is observed to have X-ray emission (due to any source) as bright as the extrapolation from radio frequencies of radio synchrotron emission. If synchrotron X-rays are detected or inferred, their morphology and spectrum provide important information on mechanisms governing acceleration to the highest energies. I describe models of synchrotron emission from SNRs and their comparison with observations. Finally, I describe the tasks ahead for both observers and theoreticians, to make better use of what SNR synchrotron emission tells us about particle acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号