首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

2.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.  相似文献   

3.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.  相似文献   

4.
This paper reviews selected topics in cosmic-ray transport in the heliosphere, as well as recent insights on the interaction of cosmic rays with shocks. Topics include: (a) recent observations suggesting very long inferred scattering mean-free paths of cosmic rays, (b) recent insights into the diffusion of cosmic rays normal to a magnetic field, (c) the physics of super-diffusion and sub-diffusion, and (e) the interaction of cosmic rays with shocks moving through large-scale irregular magnetic fields.  相似文献   

5.
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   

6.
The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the “CR-B” relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.  相似文献   

7.
On an astronomical scale cosmic rays must be considered a tenuous and extremely hot (relativistic) gas. The pressure of the cosmic-ray gas is comparable to the other gas and field pressures in interstellar space, so that the cosmic-ray pressure must be taken into account in treating the dynamical properties of the gaseous disk of the galaxy. This review begins with a survey of present knowledge of the cosmic-ray gas. Then the kinetic properties of the gas are developed, followed by an exposition of the dynamical effects of the cosmic-ray gas on a large-scale magnetic field embedded in a thermal gas. The propagation of low-frequency hydromagnetic waves is worked out in the fluid approximation.The dynamical properties of the gaseous disk of the galaxy are next considered. The equations for the equilibrium distribution in the direction perpendicular to the disk are worked out. It is shown that a self-consistent equilibrium can be constructed within the range of the observational estimates of the gas density, scale height, turbulent velocity, field strength, cosmic-ray pressure, and galactic gravitational acceleration. Perturbation calculations then show that the equilibrium is unstable, on scales of a few hundred pc and in times of the order 2 × 107 years. The instability is driven about equally by the magnetic field and the cosmic-ray gas and dominates self-gravitation. Hence the instability dominates the dynamics of the interstellar gas and is the major effect in forming interstellar gas clouds. Star formation is the end result of condensation of the interstellar gas into clouds, indicating, then, that cosmic rays play a major role in initiating star formation in the galaxy.The cosmic rays are trapped in the unstable gaseous disk and escape from the disk only in so far as their pressure is able to inflate the magnetic field of the disk. The observed scale height of the galactic disk, the short life (106 years) of cosmic-ray particles in the disk of the galaxy, and their observed quiescent state in the disk, indicate that the galactic magnetic field acts as a safety valve on the cosmic ray pressure P so that PB 2/8. We infer from the observed life and quiescence of the cosmic rays that the mean field strength in the disk of the galaxy is 3–5 × 10–6 gauss.  相似文献   

8.
Fahr  H. J.  Neutsch  W.  Grzedzielski  S.  Macek  W.  Ratkiewicz-Landowska  R. 《Space Science Reviews》1986,43(3-4):329-381
Existing heliopause models are critically rediscussed under the new aspect of possible plasma mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for several models with turbulence caused by electrostatic or electromagnetic interactions that could be envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, especially in regard to their LISM magnetic field dependence.For weak fields (less than 10–7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount to 20–30% of the impinging mass flow.Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at the heliopause was published in which a continuous change of the plasma properties within an extended boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formulation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric fields and currents in the layer, an interesting relationship between the field-reconnection probability and the electric conductivity can be derived, permitting a quantitative determination of either of these quantities.An actual value for the electrical conductivity is derived here on the basis of electron distribution functions given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the reconnection coefficient.By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the order of 10–6 G or larger that field reconnection processes may also play an important role for the plasma mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 10% of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving the strength and orientation of the LISM field.A series of observational implications for the expected plasma mixing at the heliopause is discussed in the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays towards the inner part of the solar system and for convective electric field mergings into the heliosphere during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the generation of these waves.  相似文献   

9.
Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necessarily indirect. Observational data of magnetic fields in the halo of the Milky Way are scarce, and non-conclusive about the large-scale structure of the field. In external galaxies, various large-scale configurations of magnetic fields are measured, but many uncertainties about exact configurations and their origin remain. There is a strong interaction between magnetic fields and other components in the interstellar medium such as ionized and neutral gas and cosmic rays. The energy densities of these components are comparable on large scales, indicating that magnetic fields are not passive tracers but that magnetic field feedback on the other interstellar medium components needs to be taken into account.  相似文献   

10.
We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.  相似文献   

11.
The properties of the solar wind including magnetic fields, plasma, and plasma waves are briefly reviewed with emphasis on conditions near and beyond the orbit of Jupiter. An extrapolation of the steady-state wind to large distances, evolution of disturbances and structure, modulation of cosmic rays, interactions with planetary bodies (bow shocks and magnetosheaths), and interactions with interstellar neutral helium and hydrogen are briefly discussed. Some comments on instrumentation requirements to observationally define the above phenomena are also included.This is one of the publications by the Science Advisory Group.  相似文献   

12.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   

13.
Ulysses observed a stable strong CIR from early 1992 through 1994 during its first journey into the southern hemisphere. After the rapid latitude scan in early 1995, Ulysses observed a weaker CIR from early 1996 to mid-1997 in the northern hemisphere as it traveled back to the ecliptic at the orbit of Jupiter. These two CIRs are the observational basis of the investigation into the latitudinal structure of CIRs. The first CIR was caused by an extension of the northern coronal hole into the southern hemisphere during declining solar activity, whereas the second CIR near solar minimum activity was caused by small warps in the streamer belt. The latitudinal structure is described through the presentation of three 26-day periods during the southern CIR. The first at ∼24°S shows the full plasma interaction region including fast and slow wind streams, the compressed shocked flows with embedded stream interface and heliospheric current sheet (HCS), and the forward and reverse shocks with associated accelerated ions and electrons. The second at 40°S exhibits only the reverse shock, accelerated particles, and the 26-day modulation of cosmic rays. The third at 60°S shows only the accelerated particles and modulated cosmic rays. The possible mechanisms for the access of the accelerated particles and the CIR-modulated cosmic rays to high latitudes above the plasma interaction region are presented. They include direct magnetic field connection across latitude due to stochastic field line weaving or to systematic weaving caused by solar differential rotation combined with non-radial expansion of the fast wind. Another possible mechanism is particle diffusion across the average magnetic field, which includes stochastic field line weaving. A constraint on connection to a distant portion of the CIR is energy loss in the solar wind, which is substantial for the relatively slow-moving accelerated ions. Finally, the weaker northern CIR is compared with the southern CIR. It is weak because the inclination of the streamer belt and HCS decreased as Ulysses traveled to lower latitudes so that the spacecraft remained at about the maximum latitudinal extent of the HCS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Simnett  G.M. 《Space Science Reviews》2001,99(1-4):231-242
This article reviews observations on the large-scale distribution of various constituents of the interstellar medium. We subsequently discuss several theoretical issues related directly to Galactic cosmic rays: the Galactic hydrostatic equilibrium, the Parker instability of the Galactic disk, and the problem of the origin of the large-scale Galactic magnetic field.  相似文献   

15.
I discuss how radioastronomical observations can provide information on the turbulence that governs the propagation of cosmic rays in the Galaxy. Interstellar radio wave propagation effects, collectively referred to as interstellar scintillations, yield information on the spatial power spectra of fluctuations in plasma density and magnetic field. Results of relevance to cosmic-ray physics are the existence of interstellar turbulence over a wide range of spatial scales (which can thus interact with a wide range of cosmic ray energies), the detection of magnetic field fluctuations in association with this turbulence, and a change in the nature of the turbulence on spatial scales of about 3.5 parsecs. A number of mysteries remain, such as the apparent suppression of Fast Magnetosonic wave generation by the interstellar turbulence.  相似文献   

16.
-stability analysis is used to investigate the adiabatic stability of a star containing an axisymmetric toroidal magnetic field. Necessary and sufficient conditions for -stability are derived. Special attention is devoted to the typical hydromagnetic instabilities that can be introduced by a weak toroidal magnetic field in a star that is stably stratified in the absence of any magnetic field. An expression for the maximum growth rate of instability is derived and the basic properties of the displacement fields associated with the instabilities are indicated.  相似文献   

17.
The maximum inclination of the heliospheric current sheet (the tilt angle) and the magnitude B of the heliospheric magnetic field are often used to characterize cosmic ray (CR) modulation. The relevance of B is likely to be the coupling of the interplanetary diffusion coefficients K to the field magnitude in a relation KB −n. In this paper we study the coupled influence of tilt angle and magnetic field variations on the modulation of cosmic rays at neutron monitor energies for the 1974 mini-cycle and for the onsets of solar cycles 21, 22, and 23. It is suggested that for A>0 polarity epochs, the sensitivity of the CR response to variations in B is partly controlled by the size of the tilt angle, α. The onsets of cycles 21 and 23 exhibit differences, related to phase differences in these parameters. A simple model is used to predict the CR response to variations in B. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Energetic particles in the heliosphere, from relatively low-energy particles which are accelerated in Corotating Interaction Regions (CIRs) to galactic cosmic rays, are observed to propagate relatively easily in heliographic latitude. Two mechanisms for this transport appear possible: cross-field diffusion, or, in a recent model for the heliospheric magnetic field, by direct magnetic connection. The commonalties and differences of these two mechanisms are considered, and the need for future observations and modeling efforts are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The need for a correct quantitative treatment of the interactions between cosmic rays and turbulent magnetic fields continues to be one of the fundamental problems of modern astrophysics. It is the aim of this paper to review new developments in the understanding of mechanisms involved in the scattering of charged particles by magnetic field fluctuations. Special emphasis is given to a comparison of transport parameters determined from the modeling of spacecraft and neutron monitor observation of solar particle events, with theoretical predictions derived from a spectral analysis of simultaneously measured fluctuation spectra. It appears that the traditional quasi-linear theory of particle scattering requires only a slight modification, and the major problem still is our lack of knowledge of the three-dimensional structure of the magnetic turbulence. Possibilities to better reconcile the theory with observations by properly taking into account the microphysics of wave and turbulence aspects of the fluctuations, and to use energetic particles as probes to study certain properties of the magnetic turbulence, are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A space mission to Jupiter and Saturn, and beyond, provides an opportunity to explore the low energy galactic cosmic rays, which are largely excluded from the inner solar system by the outward sweep of the magnetic fields in the solar wind. The low energy cosmic rays are believed to be responsible for much of the heating of the gaseous disk of the galaxy, so a measurement of their intensity will have far reaching effects on theories of the interstellar gas and the evolution of the galaxy. The nuclear abundances, and in particular the presence or absence of high Z nuclei, will give critical information on the proximity of cosmic ray sources.This is one of the publications by the Science Advisory Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号