首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The observations at different solar distances and latitudes, collected in the past three decades, and the results obtained from more and more sophisticated numerical simulations allowed us to reach a good understanding on many aspects of the complex phenomenon of solar wind turbulence. Moreover, new interesting insights in the theory of turbulence have been obtained, in the past decade, from the point of view that considers a turbulent flow as a complex system, where chaotic behavior and well-established scaling laws coexist. This review aims to provide a quick overview on the state of art in this research field with particular focus on local generation mechanisms.  相似文献   

3.
The precise nature of photospheric flows, and of the transport effects they give rise to, has been the subject of intense debate in the last decade. Here we attempt to give a brief review of the subject emphasizing interdisciplinary (solar physics–turbulence theory) aspects, key open questions, and recent developments.  相似文献   

4.
We present results from hybrid (particle ions, fluid electrons) simulations of the evolution of Alfvén waves close to the ion cyclotron frequency in the solar wind, which take into account the basic properties of the background solar wind flow, i.e., the spherical expansion and the consequent decrease in magnetic field and cyclotron frequency with increasing distance from the Sun. We follow the evolution of a plasma parcel in a frame of reference moving with the solar wind using a 1D expanding box hybrid model; use of the hybrid model yields a fully self-consistent treatment of the resonant cyclotron wave-particle interaction. This model is related to a previous MHD model (Velli et al. 1992), which allows the use of a simple Cartesian geometry with periodic boundary conditions. The use of stretched expanding coordinates in directions transverse to the mean radial solar wind flow naturally introduces an anisotropic damping effect on velocity and magnetic field. We present results for the case of a single circularly polarized Alfvén wave propagating radially outward. Initially, the wave is below the cyclotron frequency for both the alpha partcles and protons. As the wind expands, the wave frequency (as seen in the solar wind frame) decreases more slowly than the cyclotron frequencies and the wave comes into resonance. With only protons, heating occurs as the wave frequency approaches the proton cyclotron frequency. With both alphas and protons, the alphas, which come into resonance first, are observed to be preferentially heated and accelerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question. Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier elements don't settle out completely. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Energetic (0.1-16 keV/e) ion data from a plasma composition experiment on the ISEE-1 spacecraft show that Earth's plasma sheet (inside of 23 RE) always has a large population of H+ and He++ ions, the two principal ionic components of the solar wind. This population is the largest, in terms of both number density and spatial thickness, during extended periods of northward interplanetary magnetic field (IMF) and is then also the most "solar wind-like" in the sense that the He++/H+ density ratio is at its peak (about 3% on average in 1978 and 79) and the H+ and He++ have mean (thermal) energies that are in the ratio of about 1:4 and barely exceed the typical bulk flow energy in the solar wind. During geomagnetically active times, associated with southward turnings of the IMF, the H+ and He++ are heated in the central plasma sheet, and reduced in density. Even when the IMF is southward, these ions can be found with lower solar wind-like energies closer to the tail lobes, at least during plasma sheet thinning in the early phase of substorms, when they are often seen to flow tailward, approximately along the magnetic field, at a slow to moderate speed (of order 100 km s-1 or less). These tailward flows, combined with the large density and generally solar wind-like energies of plasma sheet H+ and He++ ions during times of northward IMF, are interpreted to mean that the solar wind enters along the tail flanks, in a region between the lobes and the central plasma sheet, propelled inward by ExB drift associated with the electric fringe field of the low latitude magnetopause boundary layer (LLBL). In order to complete this scenario, it is argued that the rapid (of order 1000 km s-1) earthward ion flows (mostly H+ ions), also along the magnetic field, that are more typically the precursors of plasma sheet "recovery" during substorm expansion, are not proof of solar wind entry in the distant tail, but may instead be a time-of-flight effect associated with plasma sheet redistribution in a dipolarizing magnetic field.  相似文献   

8.
Bochsler  Peter 《Space Science Reviews》2001,97(1-4):113-121
Although coronal mass ejections have traditionally been thought to contribute only a minor fraction to the total solar particle flux, and although such events mainly occur in lower heliographic latitudes, the impressive spectacle of eruptions - observed with SOHO/LASCO even at times of solar minimum - indicates that an important part of the low-latitude solar corona is fed with matter and magnetic fields in a highly transient manner. Elemental and isotopic abundances determined with the new generation of particle instruments with high sensitivity and strongly enhanced time resolution indicate that, apart from FIP/FIT-fractionation, mass-dependent fractionation can also influence the replenishment of the thermal ion population of the corona. Furthermore, selective enrichment of the thermal coronal plasma with rare species such as 3He can occur. Such compositional features have until recently only been found in energetic particles from impulsive flare events. This review will concentrate on this and other aspects of the present solar maximum and conclude with some outlook on future investigations of near-terrestrial space climate (the generalized counterpart of ‘space weather’). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
On the Slow Solar Wind   总被引:1,自引:0,他引:1  
Fisk  L.A.  Schwadron  N.A.  Zurbuchen  T.H. 《Space Science Reviews》1998,86(1-4):51-60
A theory for the origin of the slow solar wind is described. Recent papers have demonstrated that magnetic flux moves across coronal holes as a result of the interplay between the differential rotation of the photosphere and the non-radial expansion of the solar wind in more rigidly rotating coronal holes. This flux will be deposited at low latitudes and should reconnect with closed magnetic loops, thereby releasing material from the loops to form the slow solar wind. It is pointed out that this mechanism provides a natural explanation for the charge states of elements observed in the slow solar wind, and for the presence of the First-Ionization Potential, or FIP, effect in the slow wind and its absence in fast wind. Comments are also provided on the role that the ACE mission should have in understanding the slow solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   

11.
Coronal holes are the lowest density plasma components of the Sun's outer atmosphere, and are associated with rapidly expanding magnetic fields and the acceleration of the high-speed solar wind. Spectroscopic and polarimetric observations of the extended corona, coupled with interplanetary particle and radio sounding measurements going back several decades, have put strong constraints on possible explanations for how the plasma in coronal holes receives its extreme kinetic properties. The Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO) spacecraft has revealed surprisingly large temperatures, outflow speeds, and velocity distribution anisotropies for positive ions in coronal holes. We review recent observations, modeling techniques, and proposed heating and acceleration processes for protons, electrons, and heavy ions. We emphasize that an understanding of the acceleration region of the wind (in the nearly collisionless extended corona) is indispensable for building a complete picture of the physics of coronal holes.  相似文献   

12.
The composition of the solar wind is largely determined by the composition of the source material, i.e. the present-day composition of the outer convective zone. It is then modified by the processes which operate in the transition region and in the inner corona. In situ measurements of the solar wind composition give a unique opportunity to obtain information on the isotopic and elemental composition of the Sun. However, elemental — and to some degree also isotopic — fractionation can occur in the flow of matter from the outer convective zone into the interplanetary space. The most important examples of elemental fractionation are the well-known FIP/FIT effect (First Ionization Potential/Time) and the sometimes dramatic variations of the helium abundance relative to hydrogen in the solar wind. A thorough investigation of fractionation processes which cause compositional variations in different solar wind regimes is necessary to make inferences about the solar source composition from solar wind observations. Our understanding of these processes is presently improving thanks to the detailed diagnostics offered by the optical instrumentation on SOHO. Correlated observations of particle instruments on Ulysses, WIND, and SOHO, together with optical observations will help to make inferences for the solar composition. Continuous in situ observations of several isotopic species with the particle instruments on WIND and SOHO are currently incorporated into an experimental database to infer isotopic fractionation processes which operate in different solar wind regimes between the solar surface and the interplanetary medium. Except for the relatively minor effects of secular gravitational sedimentation which works at the boundary between the outer convective zone and the radiative zone, refractory elements such as Mg can be used as faithful witnesses to monitor the magnitude of these processes. With theoretical considerations it is possible to make inferences about the importance of isotopic fractionation in the solar wind from a comparison of optical and in situ observations of elemental fractionation with the corresponding models. Theoretical models and preliminary results from particle observations indicate that the combined isotope effects do not exceed a few percent per mass unit. In the worst case, which concerns the astrophysically important 3He/4He ratio, we expect an overall effect of at most several percent in the sense of a systematic depletion of the heavier isotope. Continued observations with WIND, SOHO, and ACE, and, with the revival of the foil technique, with the upcoming Genesis mission will further consolidate our knowledge about the relation between solar wind dynamics and solar wind composition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

14.
15.
Tappin  S.J.  Simnett  G.M.  Lyons  M.A. 《Space Science Reviews》2001,97(1-4):17-20
In a previous paper (Tappin et al., 1999) we used cross-correlation analysis of high-cadence observations with the LASCO coronagraphs to trace the acceleration of the solar wind at low latitudes. In this paper we present a similar analysis carried out over the North pole of the Sun. The observations which were made in March 2000 with the C3 coronagraph show low bulk flow speeds (comparable to or lower than those seen at the equator in early 1998). We observe the acceleration continuing to the edge of the C3 field of view at about 30 R . We also observe, as at low latitude, a high-speed tail but now reaching out well beyond 2000 km s−1. We do not see a clear signature of a fast polar bulk flow. We therefore conclude that at this phase of the solar cycle, any fast bulk flow occupies only a small part of the line of sight and is therefore overwhelmed by the denser slow solar wind in these observations. We also show that the fast component is consistent with observed solar wind speeds at 1 AU. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Fisk  L.A.  Schwadron  N.A. 《Space Science Reviews》2001,97(1-4):33-33
A theory is presented for the origin of the solar wind, which is based on the behavior of the magnetic field of the Sun. The magnetic field of the Sun can be considered as having two distinct components: Open magnetic flux in which the field lines remain attached to the Sun and are dragged outward into the heliosphere with the solar wind. Closed magnetic flux in which the field remains entirely attached to the Sun, and forms loops and active regions in the solar corona. It is argued that the total open flux should tend to be constant in time, since it can be destroyed only if open flux of opposite polarity reconnect, a process that may be unlikely since the open flux is ordered into large-scale regions of uniform polarity. The behavior of open flux is thus governed by its motion on the solar surface. The motion may be due primarily to a diffusive process that results from open field lines reconnecting with randomly oriented closed loops, and also due to the usual convective motions on the solar surface such as differential rotation. The diffusion process needs to be described by a diffusion equation appropriate for transport by an external medium, which is different from the usual diffusion coefficient used in energetic particle transport. The loops required for the diffusion have been identified in recent observations of the Sun, and have properties, both in size and composition, consistent with their use in the model. The diffusive process, in which reconnection occurs between open field lines and loops, is responsible for the input of mass and energy into the solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Although the average composition of solar energetic particles (SEPs) and the bulk solar wind are similar in a number of ways, there are key differences which imply that solar wind is not the principal seed population for SEPs accelerated by coronal mass ejection (CME) driven shocks. This paper reviews these composition differences and considers the composition of other possible seed populations, including coronal material, impulsive flare material, and interplanetary CME material.  相似文献   

18.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

19.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   

20.
A dependence of the polar cap magnetic flux on the interplanetary magnetic field and on the solar wind dynamic pressure is studied. The model calculations of the polar cap and auroral oval magnetic fluxes at the ionospheric level are presented. The obtained functions are based on the paraboloid magnetospheric model calculations. The scaling law for the polar cap diameter changing for different subsolar distances is demonstrated. Quiet conditions are used to compare theoretical results with the UV images of the Earth’s polar region obtained onboard the Polar and IMAGE spacecrafts. The model calculations enable finding not only the average polar cap magnetic flux but also the extreme values of the polar cap and auroral oval magnetic fluxes. These values can be attained in the course of the severe magnetic storm. Spectacular aurora often can be seen at midlatitude during severe magnetic storm. In particularly, the Bastille Day storm of July 15–16, 2000, was a severe magnetic storm when auroral displays were reported at midlatitudes. Enhancement of global magnetospheric current systems (ring current and tail current) and corresponding reconstruction of the magnetospheric structure is a reason for the equatorward displacement of the auroral zone. But at the start of the studied event the contracted polar cap and auroral oval were observed. In this case, the sudden solar wind pressure pulse was associated with a simultaneous northward IMF turning. Such IMF and solar wind pressure behavior is a cause of the observed aurora dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号