首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor \(\dot{m}\) should be in the range ~1–30. A factor \(\dot{m}\sim 1\) give black hole winds with velocities v~0.1c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical (Mσ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical Mσ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10?3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out?1200 km?s?1 and drives rates \(\dot{M}_{\mathrm{out}}\sim 4000~\mathrm {M}_{\odot }\,\mathrm{yr}^{-1}\) in cool (molecular) gas, giving a typical outflow mechanical energy L mech?0.05L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.  相似文献   

2.
??EIT waves?? are large-scale coronal bright fronts (CBFs) that were first observed in 195 Å images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Commonly called ??EIT waves??, CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100?C700 km?s?1 with front widths of 50?C100 Mm. As their speed is greater than the quiet coronal sound speed (c s ??200 km?s?1) and comparable to the local Alfvén speed (v A ??1000 km?s?1), they were initially interpreted as fast-mode magnetoacoustic waves ( $v_{f}=(c_{s}^{2} + v_{A}^{2})^{1/2}$ ). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.  相似文献   

3.
Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions.
  1. (1)
    The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above \(10^{18}~\mbox{erg}/\mbox{s}\) (\(10^{11}\) w).
     
  2. (2)
    The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy.
     
  3. (3)
    When the power reaches \(3\mbox{--}5\times 10^{18}~\mbox{erg}/\mbox{s}\) (\(3\mbox{--}5\times 10^{11}\) w) for about one hour and the stored magnetic energy reaches \(3\mbox{--}5\times10^{22}\) ergs (\(10^{15}\) J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density \({\approx}3\times 10^{-12}~\mbox{A}/\mbox{cm}^{2}\) and the total current \({\approx}10^{6}~\mbox{A}\) at 6 Re). As a result, the plasma sheet current is reduced.
     
  4. (4)
    The magnetosphere is thus deflated. The current reduction causes \(\partial B/\partial t > 0\) in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both Pedersen and Hall currents and thus generates the UL current system.
     
  5. (5)
    A significant part of the magnetic energy is accumulated in the main body of the magnetosphere (the inner plasma sheet) between 4 Re and 10 Re, because the power (Poynting flux \([ \boldsymbol{E} \times \boldsymbol{B} ])\) is mainly directed toward this region which can hold the substorm energy.
     
  6. (6)
    The substorm intensity depends on the location of the energy accumulation (between 4 Re and 10 Re), the closer the location to the earth, the more intense substorms becomes, because the capacity of holding the energy is higher at closer distances. The convective flow toward the earth brings both the ring current and the plasma sheet current closer when the dynamo power becomes higher.
     
This proposed sequence is not necessarily new. Individual processes involved have been considered by many, but the electric current approach can bring them together systematically and provide some new quantitative insights.
  相似文献   

4.
5.
The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.  相似文献   

6.
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.  相似文献   

7.
磁流体湍流中存在多种相干结构,包括电流和涡旋结构。文章主要对近几年有关磁流体湍流相干结构及其相关的能量传输的一些工作进行了介绍。不同于中性流体湍流中的管状结构,磁流体中的相干结构多呈现为片状,强电流片附近也存在强涡片结构。磁流体湍流中的能量级串使能量跨尺度从大尺度传递至小尺度;与中性流体湍流能量传输主要集中在相近尺度上不同,磁流体湍流除了动能传输,还有磁能传输,以及动能与磁能之间的跨尺度互相转换。研究表明,磁流体湍流中的能量传输及耗散具有强间歇性,集中在较小区域范围,且与相干结构存在关联。在存在背景磁场的情况下,磁流体湍流中的相干结构在背景磁场方向上被拉长,而同样方向上的能量传输受到抑制。在高马赫数的情况下,激波的产生会使能量传输明显增强,同时带来很强的间歇性,结构函数标度律远远偏离线性标度关系,并且随着阶数的增加,标度指数会达到饱和值。  相似文献   

8.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   

9.
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions.  相似文献   

10.
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 Å. Solar observations of especial value for the investigation of the 300–400 Å region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded. Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 Å involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

11.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71–100 μm (\(1750\mbox{--}100~\mbox{cm}^{-1}\)) with a spectral sample interval of \(8.66~\mbox{cm}^{-1}\) and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 μm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is \(\leq2.2 \times 10^{-8}~\mbox{W}\,\mbox{cm}^{-2}\,\mbox{sr} ^{-1}/\mbox{cm}^{-1}\) between 300 and \(1350~\mbox{cm}^{-1}\). The absolute integrated radiance error is \(<1\%\) for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is \(37.5 \times 28.9 \times 52.2~\mbox{cm}\), and the mass is 6.27 kg. The power consumption is 10.8 W average. OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.  相似文献   

12.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

13.
Transonically rotating toroidal plasmas occur at all scales in the plasma universe and, recently, also in laboratory tokamak plasmas. This offers great opportunities for new insights of the effects of transonic transitions on the background equilibrium flows, and on the waves and instabilities excited. Transfer of knowledge and computational methods on MHD and two-fluid waves and instabilities in magnetically confined laboratory fusion plasmas to space and astrophysical plasmas is seriously hampered though by two related difficulties:
  1. in contrast to laboratory plasmas, astrophysical plasmas always have sizeable plasma flows so that they can never be described as a static equilibrium;
  2. these flows are usually ‘transonic’, i.e., surpass one of the critical speeds related to the different flow regimes with quite different physical characteristics.
Based on previously obtained MHD results on the stationary states and instabilities of transonically rotating accretion disks about compact objects, the extension to two-fluid plasmas is initiated: A variational principle for the computation of two-fluid stationary states is constructed which involves seven fields determining the different physical variables, and six arbitrary stream functions that should be determined by spatially resolved astrophysical observations. It exhibits all the intricacies due to the electron and ion flow excursions from the magnetic flux surfaces. New hyperbolic flow regimes are found with quite different properties than the MHD ones.  相似文献   

14.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   

15.
NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of \(1.3\mbox{--}1.8~\mbox{g}\,\mbox{cm}^{-3}\), and an effective regolith Young’s modulus of \(2.5^{+1.9}_{-1.4}~\mbox{MPa}\). At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be \(\sim2\times10^{-10}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\) with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of \(10^{-8}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\).  相似文献   

16.
17.
Empirical models for the plasma densities in the inner magnetosphere, including plasmasphere and polar magnetosphere, have been in the past derived from in situ measurements. Such empirical models, however, are still in their initial phase compared to magnetospheric magnetic field models. Recent studies using data from CRRES, Polar, and Image have significantly improved empirical models for inner-magnetospheric plasma and mass densities. Comprehensive electric field models in the magnetosphere have been developed using radar and in situ observations at low altitude orbits. To use these models at high altitudes one needs to rely strongly on the assumption of equipotential magnetic field lines. Direct measurements of the electric field by the Cluster mission have been used to derive an equatorial electric field model in which reliance on the equipotential assumption is less. In this paper we review the recent progress in developing empirical models of plasma densities and electric fields in the inner magnetosphere with emphasis on the achievements from the Image and Cluster missions. Recent results from other satellites are also discussed when they are relevant.  相似文献   

18.
Numerical dynamo models are increasingly successful in modeling many features of the geomagnetic field. Moreover, they have proven to be a useful tool for understanding how the observations connect to the dynamo mechanism. More recently, dynamo simulations have also ventured to explain the surprising diversity of planetary fields found in our solar system. Here, we describe the underlying model equations, concentrating on the Boussinesq approximations, briefly discuss the numerical methods, and give an overview of existing model variations. We explain how the solutions depend on the model parameters and introduce the primary dynamo regimes. Of particular interest is the dependence on the Ekman number which is many orders of magnitude too large in the models for numerical reasons. We show that a minor change in the solution seems to happen at $\mbox {E}=3\mbox {$\times 10^{-6}$}$ whose significance, however, needs to be explored in the future. We also review three topics that have been a focus of recent research: field reversal mechanisms, torsional oscillations, and the influence of Earth’s thermal mantle structure on the dynamo. Finally we discuss the possibility of tidally or precession driven planetary dynamos.  相似文献   

19.
The possibility to perform in-situ measurements of velocity, magnetic field, density and temperature fluctuations in the Solar Wind has greatly improved our knoweledge of MHD turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics.These fluctuations on the one hand extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent non-linear energy cascade, on the other hand display, mainly in the trailing edge of high speed streams, a number of striking features: (i) a high degree of correlation between magnetic and velocity field fluctuations, (ii) a very low level of fluctuations in mass density and magnetic field intensity, (iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic field correlation tensor. More recently it has been stressed that MHD turbulence in the Solar Wind displays a clear intermittent character.The picture which emerges from the most recent analytical theories and numerical simulations is presented. In particular the observations which give us informations about the dissipation mechanism, which remains yet largely unknown, are discussed.  相似文献   

20.
Magnetohydrodynamic (MHD) theory has been used in space physics for more than forty years, yet many important questions about space plasmas remain unanswered. We still do not understand how the solar wind is accelerated, how mass, momentum and energy are transported into the magnetosphere and what mechanisms initiate substorms. Questions have been raised from the beginning of the space era whether MHD theory can describe correctly space plasmas that are collisionless and rarely in thermal equilibrium. Ideal MHD fluids do not induce electromotive force, hence they lose the capability to interact electromagnetically. No currents and magnetic fields are generated, rendering ideal MHD theory not very useful for space plasmas. Observations from the plasma sheet are used as examples to show how collisionless plasmas behave. Interpreting these observations using MHD and ideal MHD concepts can lead to misleading conclusions. Notably, the bursty bulk flows (BBF) with large mean velocities left( v ≥400 km s right) that have been interpreted previously as E×B flows are shown to involve much more complicated physics. The sources of these nonvanishing v events, while still not known, are intimately related to mechanisms that create large phase space gradients that include beams and acceleration of ions to MeV energies. The distributions of these nonvanishing v events are associated with large amplitude variations of the magnetic field at frequencies up to and exceeding the local Larmor frequency where MHD theory is not valid. Understanding collisionless plasma dynamics such as substorms in the plasma sheet requires the self-consistency that only kinetic theory can provide. Kinetic modeling is still undergoing continual development with many studies limited to one and two dimensions, but there is urgent need to improve these models as more and more data show kinetic physics is fundamentally important. Only then will we be able to make progress and obtain a correct picture of how collisionless plasmas work in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号