首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moss protonemata are a valuable system for studying gravitropism because both sensing and upward curvature (oriented tip growth) take place in the same cell. We review existing evidence, especially for Ceratodon purpureus, that addresses whether the mass that functions in sensing is that of amyloplasts that sediment. Recent experiments show that gravitropism can take place in media that are denser than the apical cell. This indicates that gravity sensing relies on an intracellular mass rather than that of the entire cell and provides further support for the starch-statolith hypothesis of sensing. Possible mechanisms for how amyloplast mass functions in sensing and transduction are discussed.  相似文献   

2.
The initial event of gravity perception by plants is generally thought to occur through sedimentation of amyloplasts in specialized sensory cells. In the root, these cells are the columella which are located toward the center of the root cap. To define more precisely the contribution of columella cells to root gravitropism, we used laser ablation to remove single columella cells or groups of these cells and observed the effect of their removal on gravity sensing and response. Complete removal of the cap or all the columella cells (leaving peripheral cap cells intact) abolishes the gravity response of the root. Removal of stories of columella revealed differences between regions of the columella with respect to gravity sensing (presentation time) versus graviresponse (final tropic growth response of the root). This fine mapping revealed that ablating the central columella located in story 2 had the greatest effect on presentation time whereas ablating columella cells in story 3 had a smaller or no effect. However, when removed by ablation the columella cells in story 3 did inhibit gravitropic bending, suggesting an effect on translocation of the gravitropic signal from the cap rather than initial gravity perception. Mapping the in vivo statolith sedimentation rates in these cells revealed that the amyloplasts of the central columella cells sedimented more rapidly than those on the flanks do. These results show that cells with the most freely mobile amyloplasts generate the largest gravisensing signal consistent with the starch statolith hypothesis of gravity sensing in roots.  相似文献   

3.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

4.
Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception.  相似文献   

5.
In preparation for microgravity experiments, we studied the kinetics of gravitropism in seedlings of wild-type (WT) Arabidopsis and three starch-deficient mutants. One of these mutants is starchless (ACG 21) while the other two are intermediate starch mutants (ACG 20 and ACG 27). In root cap cells, ACG 20 and 27 have 51% and 60% of the WT amount of starch, respectively. However, in endodermal cells of the hypocotyl, ACG 20 has a greater amount of starch than ACG 27. WT roots and hypocotyls were much more responsive to gravity than were the respective organs of the starchless mutant, and the intermediate starch mutants exhibited reduced gravitropism but had responses that were close to that of the WT. In roots, ACG 27 (more starch) was more responsive than ACG 20 (less starch), while in hypocotyls, ACG 20 (more starch) had a greater response than ACG 27 (less starch). Taken together, our data are consistent with the starch-statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell. These results also suggest that (in roots) 51-60% starch is close to the threshold amount of starch needed for full gravitropism and that the gravity sensing system is "overbuilt."  相似文献   

6.
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.  相似文献   

7.
Despite extensive studies on plant gravitropism this phenomenon is still poorly understood. The separation of gravity sensing, signal transduction and response is a common concept but especially the mechanism of gravisensing remains unclear. This paper focuses on microinjection as powerful tool to investigate gravisensing in plants. We describe the microinjection of magnetic beads in rhizoids of the green alga Chara and related subsequent manipulation of the gravisensing system. After injection, an external magnet can control the movement of the magnetic beads. We demonstrate successful injection of magnetic beads into rhizoids and describe a multitude of experiments that can be carried out to investigate gravitropism in Chara rhizoids. In addition to examining mechanical properties, bead microinjection is also useful for probing the function of the cytoskeleton by coating beads with drugs that interfere with the cytoskeleton. The injection of fluorescently labeled beads or probes may reveal the involvement of the cytoskeleton during gravistimulation and response in living cells.  相似文献   

8.
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1.  相似文献   

9.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

10.
Roots have been shown to respond to a moisture gradient by positive hydrotropism. Agravitropic mutant plants are useful for the study of the hydrotropism in roots because on Earth hydrotropism is obviously altered by the gravity response in the roots of normally gravitropic plants. The roots are able to sense water potential gradient as small as 0.5 MPa mm−1. The root cap includes the sensing apparatus that causes a differential growth at the elongation region of roots. A gradient in apoplastic calcium and calcium influx through plasmamembrane in the root cap is somehow involved in the signal transduction mechanism in hydrotropism, which may cause a differential change in cell wall extensibility at the elongation region. We have isolated an endoxy loglucan transferase (EXGT) gene that is strongly expressed in pea roots and appears to be involved in the differential growth in hydrotropically responding roots. Thus, it is now possible to study hydrotropism in roots by comparing with or separate from gravitropism. These results also imply that microgravity conditions in space are useful for the study of hydrotropism and its interaction with gravitropism.  相似文献   

11.
The amyloplasts of root statocytes are considered to be the perceptors of gravity. However, their displacement and the starch they contain are not required for gravisensing. The mechanism of the transduction of gravistimulus remains therefore controversial. It is well known that the amplitude of the stimulus is dependent upon the intensity of the acceleration and the inclination of the root with respect to gravity. This strongly supports the hypothesis that the stimulus results in a mechanical effect (pressure or tension) on a cellular structure. Three cellular components are proposed as possible candidates for the role of transducer: the actin filaments, the endoplasmic reticulum and the plasma membrane with its ion channels. Recent results obtained in the frame of the IML 1 Mission of Spacelab show that the endoplasmic reticulum should rather be responsible for the termination of the stimulus. The contacts of amyloplasts with the distal ER could therefore be involved in the regulation of root growth.  相似文献   

12.
We examined whether sedimentable amyloplasts act as statolith in the perception of gravity in woody stems using the elongated internodes of Japanese cherry (Prunus jamasakura Sieb. ex Koidz.). In the internode of the seedlings grown on earth, amyloplasts were found sedimented at the distal end of each cell of the endodermal starch sheath tissue. In the internode grown on three-dimensional (3-D) clinostat, amyloplasts were dispersed throughout the cell matrix in the endodermal starch sheath tissue. After changing the positions of the internode from vertical to horizontal, re-sedimentation of amyloplasts toward the direction of gravity was completed in 1h, whereas the bending of the internode was observed after 12 days. We propose that sedimentable amyloplasts in the endodermal starch sheath cells may play a role in gravity perception leading to secondary xylem formation in the secondary thickening growth and eccentric growth in gravi-bending of tree stems.  相似文献   

13.
Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism 1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.  相似文献   

14.
The cytoskeleton has been proposed to be a key player in the gravitropic response of higher plants. A major approach to determine the role of the cytoskeleton in gravitropism has been to use inhibitors to disrupt the cytoskeleton and then to observe the effect that such disruption has on organ bending. Several investigators have reported that actin or microtubule inhibitors do not prevent root gravitropism, leading to the conclusion that the cytoskeleton is not involved in this process. However, there are recent reports showing that disruption of the actin cytoskeleton with the actin inhibitor, latrunculin B, promotes the gravitropic response of both roots and shoots. In roots, curvature is sustained during prolonged periods of clinorotation despite short periods of gravistimulation. These results indicate that an early gravity-induced signal continues to persist despite withdrawal of the constant gravity stimulus. To investigate further the mechanisms underlying the promotive effect of actin disruption on root gravitropism, we treated maize roots with varying concentrations of latrunculin B in order to determine the lowest concentration of latrunculin B that has an effect on root bending. After a 10-minute gravistimulus, treated roots were axially rotated on a one rpm clinostat and curvature was measured after 15 hours. Our results show that 100 nM latrunculin B induced the strongest promotive effect on the curvature of maize roots grown on a clinostat. Moreover, continuously gravistimulated roots treated with 100 nM latrunculin B exhibited stronger curvature responses while decapped roots treated with this concentration of latrunculin B did not bend during continuous gravistimulation. The stronger promotive effect of low concentrations of latrunculin B on the curvature of both clinorotated and continuously gravistimulated roots suggests that disruption of the finer, more dynamic component of the actin cytoskeleton could be the cause of the enhanced tropic responses of roots to gravity.  相似文献   

15.
In higher plants, gravity is a major environmental cue that governs growth orientation, a phenomenon termed gravitropism. It has been suggested that gravity also affects other aspects of morphogenesis, such as circumnutation and winding movements. Previously, we showed that these aspects of plant growth morphology require amyloplast sedimentation inside gravisensing endodermal cells. However, the molecular mechanism of the graviresponse and its relationship to circumnutation and winding remains obscure. Here, we have characterized a novel shoot gravitropic mutant of morning glory, weeping2 (we2). In the we2 mutant, the gravitropic response of the stem was absent, and hypocotyls exhibited a severely reduced gravitropic response, whereas roots showed normal gravitropism. In agreement with our previous studies, we found that we2 mutant has defects in shoot circumnutation and winding. Histological analysis showed that we2 mutant forms abnormal endodermal cells. We identified a mutation in the morning glory homolog of SHORT-ROOT (PnSHR1) that was genetically linked to the agravitropic phenotype of we2 mutant, and which may underlie the abnormal differentiation of endodermal cells in this plant. These results suggest that the phenotype of we2 mutant is due to a mutation of PnSHR1, and that PnSHR1 regulates gravimorphogenesis, including circumnutation and winding movements, in morning glory.  相似文献   

16.
Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes alpha-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed.  相似文献   

17.
Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.  相似文献   

18.
There has been no convincing explanation on a mechanism inducing plagiogravitropism of lateral roots. The present work deals with gravitropic features of Vignaangularis lateral roots during the course of their growth and morphometric analysis of root caps, columella cells and amyloplasts. Regardless of the magnitude of deviation of the primary root axis from the gravity vector, the newly emerging lateral roots tended to keep a constant angle to the gravity vector. They modified gravireaction several times during the course of their development: a first horizontal-growth stage when they grow in the cortex of primary roots (stage I), a sloping-down growth stage from their emergence to a length of about 1 mm (stage II), a second horizontal-growth stage from a length of about 1 mm to that of over 4 mm (stage III) and a curving-down stage thereafter (stage IV). The columella cells with amyloplasts large enough to sediment were not fully differentiated in the stage I but the turning point from the stage I to II was associated with the development of amyloplasts which were able to sediment toward the distal part of the cell. Amyloplasts were significantly small in the lateral roots over 10 mm long compared with those in ones 0–10 mm long, suggesting that they rapidly develop immediately after the lateral roots emerge from primary roots and then gradually decrease their size when the lateral roots grow over 10 mm long. This dimensional decrease of amyloplasts may be partially involved in weak gravireaction in the stage III. Evidence was not presented indicating that a switchover from the stage III to IV was connected with the dimension of root caps, the number of columella cells and the development of amyloplasts. Some factors at the molecular level rather than at the cellular and tissue levels are probably dominant to induce the stage IV.  相似文献   

19.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

20.
In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the "right way" in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号