首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemistry-climate model SOCOL has been applied for the study of ozone and temperature anomalies during 1979–1993. Temperature and ozone anomalies have been obtained for a set of model runs forced by all major stratospheric forcing mechanisms. Forcings have been prescribed separately and together to assess their individual influence on stratospheric ozone and temperature. The results of these simulations have been compared to available satellite data. The model captures well ozone depletion and cooling in the upper stratosphere due to increases in the abundance of greenhouse gases and ozone depleting substances in the atmosphere. In the lower stratosphere, the model reproduces the warming over tropical and middle latitudes caused by the El-Chichon and Pinatubo eruptions. However, the simulated ozone response is overestimated in comparison with SAGE data. The best agreement with observations has been obtained for the run with all forcings included. This emphasizes the importance of the volcanic and solar forcings for the correct reproduction of observed trends. Comparison of near-global total ozone anomalies confirms an overestimation of ozone depletion just after volcanic eruptions, while the overall agreement with the model is fairly good.  相似文献   

2.
The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September–October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2–4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12–14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW.  相似文献   

3.
Differences between the dynamical characteristics of the northern hemisphere (NH) and southern hemisphere (SH) stratosphere (e.g., the temperature, the strength of polar vortex, and the mean meridional circulation) produce hemispherically asymmetrical distributions of chemical species. In this paper, we use global models to briefly discuss various effects on chemical species caused by this asymmetrical distribution, especially on stratospheric ozone. The role of hemispheric asymmetries in chlorine and bromine loadings on mid- and high latitude ozone depletion is particularly discussed.  相似文献   

4.
本文用Nimbus7 SAM卫星观测的温度资料,分析了突然增温事例中地面地形不同的四个子午圈剖面内的温度分布及变化过程。结果表明,高山地区、平原和海面上空的行星波加热和低平流层突然增温有很大的差别。地形的影响是明显的。   相似文献   

5.
A numerical 2-D zonally averaged dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the recovery of the Earth’s ozone layer after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. A weakness in efficiencies of all catalytic cycles of the ozone destruction due to cooling of the stratosphere caused by greenhouse gases is shown to be a dominant mechanism of the impact of the greenhouse gases on the ozone layer. Numerical experiments show that the total ozone changes caused by greenhouse gases will be comparable in absolute value with the changes due to chlorine and bromine species in the middle of the 21st century. Continuous anthropogenic growth of CO2 will lead to a significantly faster recovery of the ozone layer. In this case, the global total ozone in the latitude range from 60°S to 60°N will reach its undisturbed level of 1980 by about 2040. If the CO2 growth stops, the global total ozone will reach this level only by the end of the century.  相似文献   

6.
平流层臭氧和辐射场的季节分布特征   总被引:1,自引:1,他引:1  
利用美国NCAR化学气候耦合模式WACCM3对平流层温度场、风场、臭氧及辐射场进行了模拟.结果表明,在适宜飞艇长期驻留的准零风层高度20~22km(对应大气压强范围为50~30hPa,以下均采用气压值表征对应大气高度),7-8月风速小于5m·s-1的风带可长期稳定在40°N以北.臭氧空间分布显示,在30hPa气压高度处中国地区臭氧浓度出现了带状分布,30hPa高度以下低纬度地区臭氧浓度低于中纬度地区.平流层太阳加热率的时空变化表明,在平流层上层,太阳加热率可达100×10-6K·s-1,而在平流层下层,只有10×10-6K·s-1.6-8月中国区域的太阳加热率大于9月;在100~30hPa高度内,中纬度地区太阳加热率高于低纬度地区,在30hPa高度以上,低纬度地区太阳加热率高于中纬度地区;8-9月30~40hPa高度处,太阳加热率的空间变化较小.在30hPa高度上,太阳加热率在40°N昼夜变化最大;50hPa高度处,太阳加热率的昼夜变化小于30hPa高度处,而且白天太阳加热率出现极大值的纬度明显靠北.平流层低纬度地区的长波加热率小于中纬度地区.青藏高原由于地形特殊,其6-7月的臭氧浓度、太阳加热率和长波加热率均小于同纬度其他地区.   相似文献   

7.
Air depression during Antarctic spring, its long-term behaviour and connection with ozone content has been investigated on base of rocket data for polar regions and total ozone data sets for South pole (TOMS data) for 1979–1990. It was shown, that air pressure depression near South polar region in September in the lower stratosphere has a visible (about 5% per decade) negative trend similar to the tendency which total ozone records reveal. Rather high correlation (+0.82) between air pressure in the stratosphere and total ozone content for spring in Antarctica was found.  相似文献   

8.
The geographic area at high latitudes beyond the polar circle is characterized with long darkness during the winter (polar night) and with a long summertime insolation (polar day). Consequentially, the polar vortex is formed and the surrounding strong polar jet is characterized by a strong potential vorticity gradient representing a horizontal transport barrier. The ozone dynamics of the lower and middle stratosphere is controlled both by chemical destruction processes and transport processes.  相似文献   

9.
This study presents the continuation of our previous analysis of variations of atmospheric and space weather parameters above Iberian Peninsula along two years near the 24th solar cycle maximum. In the previous paper (Morozova et al., 2017) we mainly discussed the first mode of principal component analysis of tropospheric and lower stratospheric temperature and pressure fields, which was shown to be correlated with lower stratospheric ozone and anti-correlated with cosmic ray flux. Now we extend the investigation to the second mode, which suggests a coupling between the stratosphere and the ionosphere.This second mode, located in the low and middle stratosphere (and explaining ~7% of temperature and ~3% of geopotential height variations), showed to be statistically significantly correlated with variations of the middle stratosphere ozone content and anti-correlated with variations of ionospheric total electron content. Similar co-variability of these stratospheric and ionospheric parameters was also obtained with the wavelet cross-coherence analysis.To investigate the role of atmospheric circulation dynamics and the causal nature of the found correlations, we applied the convergent cross mapping (CCM) analysis to our series. Strong evidence for the stratosphere-ionosphere coupling were obtained for the winter 2012–2013 that is characterized by the easterly QBO phase (quasi-biennial oscillations of the direction of the stratospheric zonal winds) and a strong SSW (sudden stratospheric warming event). Further analysis (for the three-year time interval 2012–2015) hint that SSWs events play main role in emphasizing the stratosphere-ionosphere coupling.  相似文献   

10.
Observations since the late 1970's have shown that from late September until the end of November (austral spring) the total ozone over the southern polar region has declined by up to 30% when compared with the ozone average of the 1957–1978 period. The decline is not uniform in time and space; from January through August, the ozone changes are very small, well within the year-to-year fluctuation limits. Satellite observations confirm that the significant ozone decline is centered over and does not expand outside of the Antarctic continent, e.g. it coincides with the location of the Antarctic stratospheric winter vortex; moreover, the decline increases poleward. Analysis of the stratospheric temperatures and geopotential heights confirms that the spring-to-spring ozone changes closely follow the changes of the thermobaric field, and that the rapid increase of ozone (and stratospheric temperature) in the spring is dependent on the time of the polar vortex breakdown, when favorable conditions for continuous meridional exchange of ozone-rich air from the middle latitudes are re-established. The stratospheric heating rates and the weak gradient in the vortex central region during early spring provide favorable conditions for weak upward motions, responsible for a substantial part of the ozone loss between the date of the solar penetration of the stratosphere, and the date of the vortex breakdown. Since the late 1970's, the breakdown of the Antarctic vortex has occured about mid-November, a month later than in years of early breakdown. It is suggested that an early breakdwon of the Antarctic vortex would interrupt the trend of declining spring ozone established over the past few years.  相似文献   

11.
Galactic cosmic ray (GCR) fluxes measured by balloons in the troposphere and stratosphere at several points in Russia, and total ozone (TO) records have been used to detect cosmic signal by linear regression analysis. It was shown that TO response is in phase with decadal variations of GCR in contrast to the assumption about ozone destruction by GCR due to the nitrogen catalytic cycle intensification. 1-D photochemical model was used to understand the situation. The results of calculations show positive ozone response in the troposphere caused by additional production of NO by GCRs.  相似文献   

12.
Umkehr, ozonesonde and satellite observations were used to determine the height/latitude distribution of the amplitude and phase of the periodic components of the variation of the ozone mixing ratio in the middle and upper stratosphere. The amplitude of the first (annual) harmonic is small in the subtropics and increases to a maximum at polar latitudes. It also increases with height in the mid and upper stratosphere to an apparent maximum just below the stratopause. The second (semi-annual) harmonic has an amplitude that is largest in tropical regions and in subpolar regions at a level of about 40 km. There seems to be very little ozone variation above 30 km with dominant periods close to the quasi-biennial period of total ozone observed in the tropics. The percent of the total variance of the ozone mixing ratio accounted for by the first harmonic is larger than 60 percent at all heights from 20° – 60° latitude in both hemispheres (except near 40 km in the Northern Hemisphere). The percent of the total variance accounted for by the second harmonic is maximum at a height of about 40 km in the tropics and at subpolar latitudes where, as mentioned, its amplitude is also largest.The phase of the first harmonic shows a marked transition from a winter/spring maximum below 30 km to a summer maximum at 30 km, changing rapidly to a maximum in winter in both hemispheres. The regions of minimum amplitude of the annual variation and the marked phase shifts with height both indicate the separation by levels of the dominant physical control mechanisms on the periodic changes of the ozone mixing ratio in the middle and upper stratosphere. Changes below 30 km respond primarily to dynamic influences in the lower stratosphere while above 30 km the periodic variations result mainly from photochemical processes. Above 40 km these variations are strongly temperature dependent.  相似文献   

13.
The analysis of the baloon and rocket measurement data reveals the changes of temperature in the polar and subpolar middle atmosphere with approaching of the magnetopause of the magnetosphere to the Earth. The data of the most observation points show the notable warming of the middle atmosphere in this situation, but there were some stations (“Vostok” in Antarctica and “Frobisher Bay” in Arctic) where the reverse dependence between these parameters was registered. The experimental data show that the total ozone content (TOC) decreases with approaching of the magnetopause to the Earth under both atmosphere warming or cooling at high altitudes. The drop in the TOC values is closely connected to increase of atmospheric electric field magnitude. The obtained results possibly could be explained in framework of the global electric circuit model.  相似文献   

14.
In this review article we summarize recent results in the coupling of the stratosphere–mesosphere during stratospheric sudden warming (SSW) events. We focus on the role of planetary and gravity waves in driving the middle atmosphere circulation and illustrate the stratosphere–mesosphere coupling during undisturbed wintertime circulation, during an SSW event, and after an SSW event during the formation of an elevated stratopause using simulations of past Arctic and Antarctic winters from the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). We illustrate the transition of the polar stratopause from being a gravity wave driven phenomena to a planetary wave driven phenomena during SSW events and its subsequent reestablishment and control by gravity waves. We also examine the synoptic structure of the stratosphere, mesosphere, and lower thermosphere using SD-WACCM data fields that show the structure of the vortex during specific dynamical events in both hemispheres. We illustrate the longitudinal asymmetry in the thermal structure in the stratosphere and mesosphere driven by differences in circulation over the polar cap regions during an SSW event. We complement this analysis of the middle atmosphere circulation with a classification of both the Arctic and Antarctic winters since 1979 into major, minor, elevated stratopause or quiet winters based on the level of disturbance using the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data. From the MERRA data we find that the combined occurrences of both major and minor warmings in the Arctic have remained constant over the past three decades while we find a minor increase in their occurrences in the Antarctic.  相似文献   

15.
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.  相似文献   

16.
平流层,中间层,低热层大气加热过程特性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本文计算了平流层、中间层和低热层大气中各种光化过程的加热率与大气的冷却率,并且给出了20—140km的大气净加热率的昼夜变化特征.为大气潮汐波的研究提供了基础.  相似文献   

17.
对流层顶变化对上对流层/下平流层臭氧分布的影响   总被引:12,自引:0,他引:12  
上对流层和下平流层(UT/LS),位于8-25km高度之间,是大气中一个很特殊的区域.大部分的臭氧分布在下平流层,在下平流层臭氧的含量发生一个很小的变化,就会对气候和地面的紫外辐射产生很大的影响.而作为气象参数的对流层顶,是充分混合、缺乏臭氧的上对流层和层结稳定、臭氧丰富的下平流层之间的边界或过渡层,其变化对臭氧总量和分布有直接和明显的影响.本文使用二维模式模拟研究对流层顶变化对臭氧在UT/LS分布的影响.模拟结果表明对流层顶的季节变化对UT/LS的臭氧分布有明显的影响,臭氧的局地变化可以超过10%在冬季北半球中纬度对流层顶高度升高1km时,模式结果表明对臭氧分布的影响比较显著,局地变化可超过6%,但是对臭氧总量的影响较小,变化不超过5DU,小于观测资料统计分析的结果。  相似文献   

18.
Results are presented from two-year simulations of the effects of short-term solar ultraviolet (UV) variability using the Met. Office coupled chemistry-climate model. The model extends from the ground to 0.1 mbar and contains a complete range of chemical reactions allowing representation of all the main ozone formation and destruction processes in the stratosphere. The simulations were achieved by incorporating a 27-day oscillation in the pre-calculated model photolysis rates. Amplitudes for this signal were determined using solar spectral UV observations from the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) instrument. Two experiments were carried out, one in which the UV variability was included in both the photolysis and radiation schemes and one in which only the photolysis scheme was modified.

The model reproduced several main features of observed correlations between short-term solar UV variability and both ozone and temperature in the tropical upper stratosphere, including the downward propagation of the phase lag and sensitivities of ozone and temperature to solar UV which are similar in magnitude to those observed. In the lower stratosphere, the ozone response to solar UV variability has not been well characterised from observations. Both model runs show a reversal of the propagation of phase lag below 10mb. The model response was found to be different between the two runs indicating that radiatively induced dynamical effects may play a significant role in the ozone response to solar UV variability.  相似文献   


19.
The International Ozone Rocket Sonde Intercomparison (IORI) conducted at Wallops Island during October 1979 provided a unique opportunity to observe ozone variations in great detail from several observing systems. The measurement period lasted 15 days during which time ozone observations were taken by ground-based, balloon, rocket, and satellite instruments. These data provided a unique opportunity for diagnosing regional stratospheric variability over a 2 week period. Examination of NMC analyses indicated that during this period the stratospheric polar vortex moved southeastward bringing air from high latitudes to Wallops Island above 10 mb. A concurrent change was observed in the upper stratosphere ozone fields observed by Nimbus-7 SBUV and in the ozone vertical distribution measured by the rocket soundings. In this study the satellite and rocket measurements are compared. The agreement is good, certainly within the errors of the measurements.  相似文献   

20.
Tidal variability in the mesosphere and lower thermosphere (MLT) during September 2019 Southern hemisphere minor sudden stratospheric warming (SSW) is investigated utilizing ground-based meteor radar wind observations from the equatorial, extratropical, middle, and high latitude stations and global reanalysis dataset. The polar warming is found to move from the mesosphere to the stratosphere until the peak warming day (PWD) of the SSW. The diurnal and semidiurnal tides at individual observational sites do not exhibit any consistent response during the observational interval, but a notable and consistent variability in some specific zonal wavenumber components, i. e., DW1 (migrating diurnal tide), DE3 (nonmigrating eastward wavenumber 3 diurnal tide), and SW2 (migrating semidiurnal tide) is found in the global reanalysis dataset. Incidentally, the warming event occurs during Spring equinox when a dominant seasonal change in the tidal activities generally takes place and hence seasonal variability is also looked into while identifying the SSW impact during the observational interval. It is found that the seasonal broad changes in the DW1, DE3, and SW2 amplitudes can be explained by the variability in the tidal sources, i.e., water vapor, convective activity, ozone, etc during the observational period. However, the extracted short-term variability in the global tidal modes on removing seasonal trend reveals noticeable response in connection with the warming event. The deseasoned amplitude of the DW1 significantly enhances around the PWD at most of the present latitudes. The deseasoned DE3 amplitude responds significantly in the middle atmosphere at low latitudes during the warming phase. The deseasoned SW2 exhibit clear enhancement around the PWD at all the latitudes. However, the deseasoned tidal features do not seem to correlate well with that of the source species unlike the seasonal ones that imply involvement of complex processes during the warming event, seeking further future investigations in this regard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号