首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequency-Agile Radar Signal Processing   总被引:1,自引:0,他引:1  
Modern radars may incorporate pulse-to-pulse carrier frequency modulation to increase probability of detection, to reduce Vulnerability to jamming, and to reduce probability of interception. However, if coherent processing is used for clutter rejection, the frequency of N consecutive pulses must be held constant for N-pulse clutter cancellation or Doppler filtering. If M pulses are transmitted during the time the antenna illuminates a target, there are M/N coherently integrated echoes available for noncoherent integration in the computer or the operator's display to further improve the signal-to-noise ratio (SNR). In this paper, analytical and simulation methods are employed to determine the balance between coherent and noncoherent integration that yields the greatest SNR improvement. Attention is focused upon a model using peak selection of fast Fourier transform (FFT) Doppler channels and is compared to a reference model involving only a single Doppler channel. Curves of detectable SNR as a function of M and N are presented for both models.  相似文献   

2.
The coherent pulse train has good clutter suppression performance because the energy in its matched-filter response is essentially concentrated within sharp ambiguous spikes. However, this is so only when the Doppler distortions are neglected, so that the Doppler effect is taken as a simple translation of the carrier frequency. This paper analyzes the consequences of Doppler distortions on the resolution performance of pulse trains. It is found that Doppler distortions widen the Doppler ambiguities of the pulse train response, with the widening factor proportional to the order of the Doppler ambiguity. This reduces the interval between Doppler ambiguities, and hence the Doppler width of a clutter space that can be accommodated without severe clutter interference. For an operation in a Doppler-ambiguous mode, it also degrades nominal Doppler resolution performance. A detailed analysis of the effects is presented, and numerical results on the widening of the Doppler ambiguities are obtained.  相似文献   

3.
A low cost concept, called Doppler ratio detection (DRD), for suppressing the clutter residue of Doppler radars is described. The concept provides a simple way to establish a target detect-clutter reject threshold at each range cell, whether a MTI canceler only or a bank of Doppler filters is used. In its simplest form, the target detect/clutter reject threshold is based on the ratio of the magnitudes of Doppler-processed and non-Doppler processed signals. The experiment showed that clutter was rejected, but the amount of added degradation in detection sensitivity was not determined. This degradation will depend on a number of factors, including the number of pulses per beamwidth  相似文献   

4.
A technique is presented for maximizing the percentage of usable Doppler bandwidth throughout which a radar return can be detected while maintaining an acceptable clutter suppression. The technique employs the weighted Chebyshev approximation to the design of a transversal high-pass digital filter which has an optimal passband ripple for a given number of filter weights and associated integration gain consistent with the required increase in signal-to-noise ratio needed for acceptable probabilities of detection and false alarm. Conventional approaches to the design of a movingtarget arget indictor (MTI) filter which maximizes the improvement factor by clutter suppression typically improve the signal-to-background noise ratio over less than 50 percent of the range between dc and the pulse-repetition frequency fT. This technique can increase the usable bandwidth to 80 percent or more of fT. Two examples are included which utilize parameter values from the Army Missile Command's experimental radar and demonstrate the interactive influence of such filter parameters as the number of weights, passband ripple and bandedge, and stopband attenuation and cutoff.  相似文献   

5.
The clutter performance of coherent pulse trains is examined when the duration of the pulse train is increased to values for which range acceleration effects must be taken into account. The problem of target detection against a clutter background with differential Doppler is studied in terms of the range acceleration effects on the conventional Doppler response. Specifically considered are the consequences on the sidelobe level and width of the main Doppler lobe. The analysis shows that the sidelobe level remains essentially unchanged when the range acceleration mismatch becomes significant. However, the main Doppler response broadens in proportion to the magnitude of the acceleration mismatch. Thus, an increase of the signal duration for better Doppler resolution is useful only until acceleration effects spread the Doppler spectrum of the clutter and eliminate the differential Doppler between targets and clutter.  相似文献   

6.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

7.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

8.
The resolution properties and clutter performance of a simultaneous Doppler and acceleration measurement are investigated in detail with particular emphasis given to coherent pulse trains. The analysis is based on the concept of a matched-filter receiver, although receiver weighting of the type that reduces Doppler sidelobes is also analyzed in detail. Near the main lobe of the acceleration response is a pedestal-ike sidelobe region, the height of which is about 1/N of the main response lobe power where N is the number of pulses in the train. The extent of this pedestal along the acceleration axis is proportional to N. The acceleration measurement in a clutter environment is best performed when both targets and clutter are confined to this pedestal region, since some response sidelobes outside of this region are extremely large.  相似文献   

9.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

10.
It is shown that in order to maximize the detectability of a radar target in clutter whose Doppler is unknown and is uniformly distributed over the Doppler bandwidth a simple CW or narrowband signal is optimal. The optimality criterion is the average deflection coefficient, with the averaging being over target Doppler frequency. Most remarkably the result does not depend on the clutter spectrum but holds for any distribution of clutter energy with frequency.  相似文献   

11.
A novel target detection approach based on adaptive radar waveform design   总被引:2,自引:2,他引:0  
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.  相似文献   

12.
The performance of certain radars is degraded in environments with significant clutter returns, and since the clutter is signal-generated, increasing the transmitted power does not improve the situation. However, changing the pulse width and pulse period of the transmitted signal can increase the input signal-to-interference ratio. In this correspondence, the transmitted signal is made up of pulses of random waveforms and the receiver is a correlator where the reference signal extends over many pulses. An expression for input signal-to-interference ratio as a function of pulse width and period is obtained for the case of a distributed target. This expression could be maximized by any of several methods, but to further elucidate the clutter reduction technique, contour plots of the input signal-to-interference ratio are presented.  相似文献   

13.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

14.
A means of optimizing a moving target indicator (MTI) filter for rejecting several types of clutter, which are generated by different mechanisms such as by rain or the ground, is formulated. lt is found that the optimal performance of such a filter depends on the spectral density functions, average radar cross sections, and the relative mean Doppler frequencies of each type of clutter. lt is shown that the optimal improvement factor of such a filter is bounded by the weighted average (weighted in accordance with the radar cross sections of the clutter types) of the improvement factor for the individual clutter type. lt is also shown that the improvement factor of such a filter is a function of the relative mean Doppler frequency f0 between the clutter types. As f0 increases, the performance of the MTI system degrades. The worst improvement factor occurs when f0 is equal to half of the radar pulse-repetition frequency (PRF).  相似文献   

15.
The effect of the clutter-to-noise ratio on the performance of a Doppler filter is considered. Clutter is assumed to have a power level which is unknown and varies in range. The assessment of the performance of a Doppler filter is based on the gain of the filter, which is the normalized output signal-to-interference ratio improvement at a given Doppler. The gain is generally a complex function of the statistics of the clutter. New upper and lower bounds on the gain differential between the expected design point clutter-to-noise ratio and the actual clutter-to-noise ratio are found. These bounds are independent of the clutter covariance matrix and are only a function of the unknown clutter-to-noise ratio. The bounds are valid for both Gaussian and non-Gaussian noise and for arbitrary linear filters. The upper and lower bounds differ by the theoretical coherent integration gain, 10 logN dB, where N is the number of pulses. A tighter lower bound is found for the case when the filters are matched filters. A simple exact expression is found for matched filters assuming a Gaussian Markov clutter model as the clutter spectral width approaches zero. An easily implementable adaptive procedure is given which improves performance due to the unknown clutter-to-noise ratio. This work extends a previous result, valid for the Emerson filter, that shows the effect of clutter-to-noise ratio on performance in terms of an average quantity, the improvement factor  相似文献   

16.
A single (quadrature) channel moving target indicator (MTI) radar system employing a tapped delay line filter is analyzed. The point of view taken is that of optimal clutter rejection in conjunction with subsequent receiver decision operations. The random nature of the spread of target Doppler shifts is taken into account. Based on the above, a procedure is presented by means of which the detection probability can be numerically evaluated for an optimized filter frequency response.  相似文献   

17.
The problem of detecting coherent pulse trains with uniform amplitude in a clutter-plus-noise environment is considered. A radar processor for detecting targets moving radially with respect to the clutter is proposed. The minimum interpulse spacing of the transmitted signal is assumed long enough that returns are not received simultaneously from different ranges within a region of extended clutter, and the central frequency of the clutter power spectrum is postulated to be known. The processor is singled out as the linear filter, orthogonal to the clutter central frequency component, which yields the maximum ratio of peak signal power to average noise power. The filter can be implemented by slightly modifying the structure of the conventional matched filter. The performance of such a filter is compared with that achievable if full a priori knowledge of the input interference were available and with that of the conventional matched filter. This comparison is made on a signal-to-interference power ratio basis after assuming a transmitted signal consisting of equally spaced pulses and an interference characterized by an exponential covariance matrix.  相似文献   

18.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

19.
The design and evaluation of an adaptive moving target indicator (MTI) filter, the adaptive canceler for extended clutter (ACEC) is dealt with, taking into consideration adaptivity to clutter mean Doppler frequency. This consideration is one of the most important operational requirements in adaptive MTI's and permits a relatively simple hardware implementation as compared to more general optimization and adaptivity criteria (briefly described). The ACEC's algorithm compensates in real time for the clutter mean Doppler frequency. Performances have been obtained by digital computer simulation in various operational conditions.  相似文献   

20.
The detection of a target in correlated clutter, thermal noise, and extraneous interference is considered. The amplitude, phase and Doppler frequency of the signal are not known a priori. A general criterion is presented which measures the performance of a suboptimal test relative to an optimal test. The criterion is encompassed into a design procedure used to design Doppler filters. The procedure allows many design considerations to be taken into account, and results in a design which attempts to minimize the number of filters required. For low dimensionality the procedure results in single filter designs; for higher dimensionality multiple filters are designed. The performances of these systems are compared with the results obtained by Emerson (1978) and Andrews (1974). It is found that the procedure yields good filter designs under general conditions and may reduce the number of filters required compared with classical designs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号