首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbst  Eric 《Space Science Reviews》2003,106(1-4):293-304
Isotopic fractionation in interstellar clouds can occur by ion-molecule reactions at low temperatures. The major effect is not kinetic but thermodynamic in origin in that it arises from the difference in rate coefficients between forward and backward directions in reactions which exchange isotopic atoms. In this article, we concentrate on deuterium fractionation in interstellar clouds; this effect enhances the relative abundances of deuterated isotopomers to their normal counterparts by up to four orders of magnitude as compared with the basic D/H elemental abundance ratio. We also discuss the fractionation of 15N and 13C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Observations and measurements in the solar wind, the Jovian atmosphere and the gases trapped in lunar surface material provide the main evidence from which the isotopic composition of H, He and Ne in the Protosolar Cloud (PSC) is derived. These measurements and observations are reviewed and the corrections are discussed that are needed for obtaining from them the PSC isotopic ratios. The D/H, 3He/4He (D+3He)/H, 20Ne/22Ne and 21Ne/22Ne ratios adopted for the PSC are presented. Protosolar abundances provide the basis for the interpretation of isotopic ratios measured in the various solar system objects. In this article we discuss constraints derived from the PSC abundances on solar mixing, the origin of atmospheric neon, and the nature of the “SEP” component of neon trapped at the lunar surface. We also discuss constraints on the galactic evolution provided by the isotopic abundances of H and He in the PSC. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Certain fundamental scientific problems of a cosmological as well as cosmogonic character, may be solved by the insertion of entry probes into the atmospheres of the outer planets. It is recommended that attempts be made to determine the elemental and isotopic abundances of H, D, He3, He4, C, N, O, S, and the rare gas elements. These determinations should cast much light on the processes which participated in the assembly of the giant planets. This would give powerful boundary conditions on theories of the origin of the solar system, and would also give additional experimental information bearing on cosmology.This is one of the publications by the Science Advisory Group.  相似文献   

4.
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
According to their chemical composition, rich in volatile compounds, comets are thought to be primitive materials. They may provide prime samples for the study of nucleosynthetic components of the solar system and of the processes occurring during the formation of the outer planets. Their origin is largely a matter of conjecture. Chromium isotopic measurements in carbonaceous chondrites illustrate how the non-volatile part of cometary material can be investigated both for isotopic heterogeneity and for the extinct nuclide 53Mn. Questions like the possible presence of 26Al as a heat source can also be addressed by these measurements.  相似文献   

6.
The Sun is the largest reservoir of matter in the solar system, which formed 4.6 Gyr ago from the protosolar nebula. Data from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes at energies of about 1 keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission’s solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe measured in situ in the solar wind.  相似文献   

7.
Information about the composition of volatiles in the Martian atmosphere and interior derives from Viking spacecraft and ground-based measurements, and especially from measurements of volatiles trapped in Martian meteorites, which contain several distinct components. One volatile component, found in impact glass in some shergottites, gives the most precise measurement to date of the composition of Martian atmospheric Ar, Kr, and Xe, and also contains significant amounts of atmospheric nitrogen showing elevated 15N/14N. Compared to Viking analyses, the 36Ar/132Xe and 84Kr/132Xe elemental ratios are larger in shergottites, the 129Xe/132Xe ratio is similar, and the 40Ar/36Ar and 36Ar/38Ar ratios are smaller. The isotopic composition of atmospheric Kr is very similar to solar Kr, whereas the isotopes of atmospheric Xe have been strongly mass fractionated in favor of heavier isotopes. The nakhlites and ALH84001 contain an atmospheric component elementally fractionated relative to the recent atmospheric component observed in shergottites. Several Martian meteorites also contain one or more Martian interior components that do not show the mass fractionation observed in atmospheric noble gases and nitrogen. The D/H ratio in the atmosphere is strongly mass fractionated, but meteorites contain a distinct Martian interior hydrogen component. The isotopic composition of Martian atmospheric carbon and oxygen have not been precisely measured, but these elements in meteorites appear to show much less variation in isotopic composition, presumably in part because of buffering of the atmospheric component by larger condensed reservoirs. However, differences in the oxygen isotopic composition between meteorite silicate minerals (on the one hand) and water and carbonates indicate a lack of recycling of these volatiles through the interior. Many models have been presented to explain the observed isotopic fractionation in Martian atmospheric N, H, and noble gases in terms of partial loss of the planetary atmosphere, either very early in Martian history, or over extended geological time. The number of variables in these models is large, and we cannot be certain of their detailed applicability. Evolutionary data based on the radiogenic isotopes (i.e., 40Ar/36Ar, 129Xe/132Xe, and 136Xe/132Xe ratios) are potentially important, but meteorite data do not yet permit their use in detailed chronologies. The sources of Mars' original volatiles are not well defined. Some Martian components require a solar-like isotopic composition, whereas volatiles other than the noble gases (C, N, and H2O) may have been largely contributed by a carbonaceous (or cometary) veneer late in planet formation. Also, carbonaceous material may have been the source of moderate amounts of water early in Martian history.  相似文献   

8.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Owen  T.  Encrenaz  T. 《Space Science Reviews》2003,106(1-4):121-138
This paper reviews our present knowledge about elemental and isotopic ratios in the Giant Planets and Titan. These parameters can provide key information about the formation and evolution of these objects. Element abundances, especially after the results of the Galileo Probe Mass Spectrometer in Jupiter, strongly support the formation model invoking an initial core formation (Mizuno, 1980; Pollack et al., 1996). They also suggest that solar composition icy planetesimals (SCIPs) brought the heavy elements to Jupiter. The Jupiter value of D/H appears to be representative of the protosolar value, while the D/H enrichment observed on Uranus and Neptune is consistent with the formation scenario of these planets. The 15N/14N measurement in Jupiter seems to be representative of its protosolar value. Future measurements are expected to come from the Cassini and Herschel space mission, as well as the ALMA submillimeter observatory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   

12.
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 12C/13C, 16O/18O, 14N/15N, 32S/34S ratios in dust and gases, and discuss their cosmogonic implications. The prospects for future measurements from cometary space missions and remote sensing observations at millimeter and submillimeter wavelengths are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In this review the present state of our knowledge on the properties of heavy ions in low energy cosmic rays measured in the Skylab mission and in other spacecrafts is summarised and the possible mechanisms of their origin are discussed. A brief review of the general features of the galactic and solar cosmic rays is given in order to understand the special features of the low energy heavy ions of cosmic rays. The results of the cosmic ray experiment in the Skylab show that in the low energy interval of 8–30 MeV/N, the abundances of oxygen, nitrogen, and neon ions, relative to carbon are enhanced by a factor of 5 to 2 as compared to high energy cosmic rays; while Mg, Si, S, and A are depleted. In 50–150 MeV/N energy interval the abundance of nuclei of Ca-Cr relative to iron-group (Z = 25–28) is found to be highly enhanced, as compared to high energy cosmic rays. Furthermore the observations of the energy spectra of O, N, and Ne ions and their fairly large fluences in the energy interval of 8–30 MeV/N below the geomagnetic cut off energy of 50 MeV/N for fully stripped nuclei at the Skylab orbit indicate that these heavy ions are probably in partly ionised states. Thus, it is found that the Skylab results represent a new type of heavy ion population of low energy cosmic rays below 50 MeV/N, in the near Earth space and their properties are distinctly different from those of high energy cosmic rays and are similar to those of the anomalous component in the interplanetary space. The available data from the Skylab can be understood at present on the hypothesis that low energy interplanetary cosmic ray ions of oxygen etc. occur in partly ionised state such as O+1,O+2, etc. and these reach the inner magnetosphere at high latitudes where stripping process occurs near mirror points and this leads to temporarily trapped ions such as O+3, O+4, etc. It is noted that the origin of these low energy heavy cosmic ray ions in the magnetosphere and in interplanetary space is not yet fully understood and new type of sources or processes are responsible for their origin and these need further studies.  相似文献   

14.
Carbon isotope ratios have been measured for CN in the coma of comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of 13C/12C values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus. The next decade should substantially improve our understanding of the distribution of C, H, N, and O isotopes in cometary organics. The isotopic composition of meteoritic organic matter is better understood and can serve as a useful analog for the cometary case.  相似文献   

15.
Levshakov  S. A.  Kegel  W. H.  Takahara  F. 《Space Science Reviews》1998,84(1-2):77-82
A new method based on a Reverse Monte Carlo [RMC] technique and aimed at the inverse problem in the analysis of interstellar (intergalactic) absorption lines is presented. The line formation process in chaotic media with a finite correlation length (l > 0) of the stochastic velocity field (mesoturbulence) is considered. This generalizes the standard assumption of completely uncorrelated bulk motions (l 0) in the microturbulent approximation which is used for the data analysis up-to-now. It is shown that the RMC method allows to estimate from an observed spectrum the proper physical parameters of the absorbing gas and simultaneously an appropriate structure of the velocity field parallel to the line-of-sight.The application to the analysis of the H+D Ly profile is demonstrated using Burles and Tytler [B&T] data for QSO 1009+2956 where the DI Ly line is seen at za = 2.504.The results obtained favor a low D/H ratio in this absorption system, although our upper limit for the hydrogen isotopic ratio of about 4.5 × 10-5 is slightly higher than that of B&T (D/H = 30 -0.5 +0.6 × 10-5). We also show that the D/H and N(HI) values are, in general, correlated, i.e. the derived D-abundance may be badly dependent on the assumed hydrogen column density. The corresponding confidence regions for an arbitrary and a fixed stochastic velocity field distribution are calculated.  相似文献   

16.
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component (Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.  相似文献   

17.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   

18.
Measurements of the anomalous cosmic ray (ACR) isotopic composition have been made in three regions of the magnetosphere accessible from the polar Earth orbit of SAMPEX, including the interplanetary medium at high latitudes and geomagnetically trapped ACRs. At those latitudes where ACRs can penetrate the Earth's magnetic field while fully stripped galactic cosmic rays (GCRs) of similar energies are excluded, a pure ACR sample is observed to have the following composition: 15N/N < 0.023, 18O/16O < 0.0034, and 22Ne/20Ne = 0.077(+0.085, –0.023). We compare our values with those found by previous investigators and with those measured in other samples of solar and galactic material. In particular, a comparison of 22Ne/20Ne measurements from various sources implies that GCRs are not simply an accelerated sample of the local interstellar medium.  相似文献   

19.
Galactic cosmic rays probably predominantly originate from shock-accelerated gas and dust in superbubbles. It is usually assumed that the shock-accelerated dust is quickly destroyed by sputtering. However, it may be that some of the dust can survive bombardment by the high-metallicity gas in the superbubble interior, and that some of that dust has been incorporated into solar system materials. Interplanetary dust particles (IDPs) contain enigmatic submicron components called GEMS (Glass with Embedded Metal and Sulfides). These GEMS have properties that closely match those expected of a population of surviving shock-accelerated dust at the GCR source (Westphal and Bradley in Astrophys. J. 617:1131, 2004). In order to test the hypothesis that GEMS are synthesized from shock-accelerated dust in superbubbles, we plan to measure the relative abundances of Fe, Zr, and Mo isotopes in GEMS using the new Resonance Ionization Mass Spectrometer at Argonne National Laboratory. If GEMS are synthesized from shock-accelerated dust in superbubbles, they should exhibit isotopic anomalies in Fe, Zr and Mo: specificially, enhancements in the r-only isotopes 96Zr and 100Mo, and separately in 58Fe, should be observed. We review also recent developments in observations of GEMS, laboratory synthesis of GEMS-like materials, and implications of observations of GEMS-like materials in Stardust samples.  相似文献   

20.
Infrared spectroscopic observations of planets and Saturn's satellite Titan with the Infrared Space Observatory led to many significant discoveries that improved our understanding on the formation, physics and chemistry of these objects. The prime results achieved by ISO are: (1) a new and consistent determination of the D/H ratios on the giant planets and Titan; (2) the first precise measurement of the 15N/14N ratio in Jupiter, a valuable indicator of the protosolar nitrogen isotopic ratio; (3) the first detection of an external oxygen flux for all giant planets and Titan; (4) the first detection of some stratospheric hydrocarbons (CH3, C2H4, CH3C2H, C4H2, C6H6); (5) the first detection of tropospheric water in Saturn; (6) the tentative detection of carbonate minerals on Mars; (7) the first thermal lightcurve of Pluto. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号