首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor \(\dot{m}\) should be in the range ~1–30. A factor \(\dot{m}\sim 1\) give black hole winds with velocities v~0.1c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical (Mσ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical Mσ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10?3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out?1200 km?s?1 and drives rates \(\dot{M}_{\mathrm{out}}\sim 4000~\mathrm {M}_{\odot }\,\mathrm{yr}^{-1}\) in cool (molecular) gas, giving a typical outflow mechanical energy L mech?0.05L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.  相似文献   

2.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   

3.
In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.  相似文献   

4.
5.
Preliminary results of an EXOSAT observation of the transient X-ray source 4U1543-47 are presented. The source was observed in August 1983, during a high state, following a Tenma alert that the source was again active. Results from the GSPC and the LE 1000 l/mm grating are presented. The spectrum is complex, but in the 2–10 keV energy range can be well described by a Comptonised thermal distribution. Extrapolating the same model into the lower energy band of the grating requires an absorption column density equivalent to 2 × 1021 H cm2. A marked under-abundance of Oxygen and overabundance of Nitrogen, along with a strong, unidentified line feature at 9.8 Å, are necessary to model the grating data.  相似文献   

6.
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar.  相似文献   

7.
Understanding properties of solar energetic particle (SEP) events associated with coronal mass ejections has been identified as a key problem in solar-terrestrial physics. Although recent CME shock acceleration models are highly promising, detailed agreement between theoretical predictions and observations has remained elusive. Recent observations from ACE have shown substantial enrichments in the abundances of 3He and He+ ions which are extremely rare in the thermal solar wind plasma. Consequently, these ions act as tracers of their source material, i.e., 3He ions are flare suprathermals and He+ ions are interstellar pickup ions. The average heavy ion composition also exhibits unsystematic differences when compared with the solar wind values, but correlates significantly with the ambient suprathermal material abundances. Taken together these results provide compelling evidence that CME-driven shocks draw their source material from the ubiquitous but largely unexplored suprathermal tail rather than from the more abundant solar wind peak. However, the suprathermal energy regime has many more contributors and exhibits much larger variability than the solar wind, and as such needs to be investigated more thoroughly. Answers to fundamental new questions regarding the preferred injection of the suprathermal ions, the spatial and temporal dependence of the various sources, and the causes of their variability and their effects on the SEP properties are needed to improve agreement between the simulations and observations.  相似文献   

8.
9.
At energies above the bulk solar wind and pick-up ion cutoff, observations reveal an interplanetary suprathermal ion population extending to ~1?MeV/nucleon and even higher energies. These suprathermal ions are found under a wide variety of conditions including periods when there are no obvious nearby accelerating shocks. We review the observational properties of these ions in quiet solar wind periods near 1?AU, including transient Corotating Interaction Region (CIR) events, and other, quieter periods in between transient enhancements. The particle energy spectra are power laws close to E ?1.5 in the range above the solar wind, rolling over at energies of a few hundred keV/nucleon to a few MeV/nucleon. Although the C/O and Fe/O ratios of the tails is close to that of the solar wind, pickup ions and 3He found in the tails indicate sources distinct from the solar wind. We briefly review several mechanisms that have been proposed to explain these ions.  相似文献   

10.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

11.
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2–3 km?s?1), which are quite common, and “large-amplitude oscillations” (>20 km?s?1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.  相似文献   

12.
Frequency stepping techniques are commonly used in modern radar system to get high range resolution with the disadvantage that its autocorrelation function (ACF) yield undesirable “grating lobes”. Wider mainlobe deteriorates the range resolution capability of the waveform and higher peak sidelobe either hides the small targets or causes the false target detection. Several techniques have been used to choose the parameters of linear frequency modulated (LFM) pulse train to suppress the grating lobes without paying much attention to the mainlobe width and peak sidelobe level. In this paper a multiobjective optimization (Nondominated Sorting Genetic Algorithm-II (NSGA-II)) approach is proposed to optimize the parameters of the LFM pulse train to achieve reduced grating lobes, low peak sidelobe level and narrow mainlobe width. The optimization problem has been studied in two different ways: first one is associated with the reduction of grating lobes and the minimization of peak sidelobe level of the ACF with constraints and second one is related to the minimization of the peak sidelobe level and mainlobe width of the ACF with constraints. Simulation studies have been carried out to justify the potentiality of the proposed approach.  相似文献   

13.
Aircraft icing has long been a plague to aviation for its serious threat to flight safety. Even though lots of methods for anti-icing have been in use or studied for quite a long time, new methods are still in great demand for both civil and military aircraft. The current study in this paper uses widely used Dielectric Barrier Discharge(DBD) plasma actuation to anti-ice on a NACA0012 airfoil model with a chord length of 53.5 cm in a closed-circuit icing wind tunnel. An actuator was installed at the leading edge of the airfoil model, and actuated by a pulsed low-temperature plasma power source. The actuator has two types of layout, a striped electrode layout and a meshy electrode layout.The ice accretion process or anti-icing process was recorded by a CCD camera and an infrared camera. Instantaneous pictures and infrared contours show that both types of DBD plasma actuators have the ability for anti-ice under a freestream velocity of 90 m/s, a static temperature of -7℃,an Median Volume droplet Diameter(MVD) of 20 lm, and an Liquid Water Content(LWC) of 0.5 g/m~3. The detected variations of temperatures with time at specific locations reveal that the temperatures oscillate for some time after spraying at first, and then tend to be nearly constant values.This shows that the key point of the anti-icing mechanism with DBD plasma actuation is to achieve a thermal equilibrium on the model surface. Besides, the power consumption in the anti-icing process was estimated in this paper by Lissajous figures measured by an oscilloscope, and it is lower than those of existing anti-icing methods. The experimental results presented in this paper indicate that the DBD plasma anti-icing method is a promising technique in the future.  相似文献   

14.
??EIT waves?? are large-scale coronal bright fronts (CBFs) that were first observed in 195 Å images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Commonly called ??EIT waves??, CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100?C700 km?s?1 with front widths of 50?C100 Mm. As their speed is greater than the quiet coronal sound speed (c s ??200 km?s?1) and comparable to the local Alfvén speed (v A ??1000 km?s?1), they were initially interpreted as fast-mode magnetoacoustic waves ( $v_{f}=(c_{s}^{2} + v_{A}^{2})^{1/2}$ ). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.  相似文献   

15.
Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.  相似文献   

16.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

17.
A 7 hour observation of the central part of the Coma Cluster of galaxies has been performed with the EXOSAT LE telescopes and CMA detectors. Five serendipitous sources are detected within the inner 35 arcmin radius of the field. Optical spectroscopy demonstrates that at least three of these are background AGN not associated with the cluster. At the sensitivity level of the EXOSAT exposure, we would have expected to see only 0.01 background sources based on the Einstein Medium Sensitivity Survey. The EXOSAT and Einstein results may be reconciled if these AGN have a much softer average X-ray spectrum than previously assumed.  相似文献   

18.
采用模型实验和数值方法,针对特定的涡轮集气腔结构进行了出流特性研究。首先,在实验室条件下,进行全尺寸基准涡轮集气腔的模型实验研究并验证数值模拟方法;其次,在接近发动机真实气-热参数条件下进行系列的数值模拟,分析进出口压比、腔室高度、出流孔孔径和出流孔轴向位置等对出流孔流量分配和温度分布的影响。研究表明,除了集气腔出流流量分配的不均匀性之外,气流与热壁面之间的对流换热也导致明显的出流温度不均匀性;改变出流孔轴向位置距离、增加集气腔腔室高度是在不影响集气腔通流能力下改善出流均匀性的有效技术措施,当出流孔轴向偏置距离或集气腔腔室高度达到一定值后,其对改善出流流量分配均匀性的作用趋于微弱,但对于改善出流温度分布均匀性依然有较好的作用。  相似文献   

19.
Designed primarily to study solar activity, Yohkoh includes an X-ray telescope that obtains full-sun coronal images which show a range of features. Coronal X-ray emission-exclusive of flares, is notable for its variability even in the largest structures. A mass ejection event is related to magnetic field reconnection. Such events exhibit both accelerated and decelerated behaviour. Coronal hole temperatures are estimated from the filter ratio method. A plasma component at around 2.106 K is identified. X-ray emission is detected from the South polar coronal hole. A preliminary comparison of Spartan coronagraph images with Yohkoh data suggests that polar plumes or rays are not connected to bright points.  相似文献   

20.
Small amounts of pre-solar “stardust” grains have survived in the matrices of primitive meteorites and interplanetary dust particles. These grains—formed directly in the outflows of or from the ejecta of stars—include thermally and chemically refractory carbon materials such as diamond, graphite and silicon carbide; as well as refractory oxides and nitrides. Pre-solar silicates, which have only recently been identified, are the most abundant type except for possibly diamond. The detailed study with modern analytical tools, of isotopic signatures in particular, provides highly accurate and detailed information with regard to stellar nucleosynthesis and grain formation in stellar atmospheres. Important stellar sources are Red Giant (RG) and Asymptotic Giant Branch (AGB) stars, with supernova contributions apparently small. The survival of those grains puts constraints on conditions they were exposed to in the interstellar medium and in the early solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号