首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the mechanisms which are thought to provide steady heating of chromospheres and coronae. It appears now fairly well established that nonmagnetic chromospheric regions of latetype stars are heated by shock dissipation of acoustic waves which are generated in the stellar surface convection zones. In the case of late-type giants there is additional heating by shocks from pulsational waves. For slowly rotating stars, which have weak or no magnetic fields, these two are the dominant chromospheric heating mechanisms.Except for F-stars, the chromospheric heating of rapidly rotating late-type stars is dominated by magnetic heating either through MHD wave dissipation (AC mechanisms) or through magnetic field dissipation (DC mechanisms). The MHD wave and magnetic field energy comes from fluid motions in the stellar convection zones. Waves are also generated by reconnective events at chromospheric and coronal heights. The high-frequency part of the motion spectrum leads to AC heating, the low frequency part to DC heating. The coronae are almost exclusively heated by magnetic mechanisms. It is not possible to say at the moment whether AC or DC mechanisms are dominant, although presently the DC mechanisms (e.g., nanoflares) appear to be the more important. Only a more detailed study of the formation of and the dissipation in small-scale structures can answer this question.The X-ray emission in early-type stars shows the presence of coronal structures which are very different from those in late-type stars. This emission apparently arises in the hot post-shock regions of gas blobs which are accelerated in the stellar wind by the intense radiation field of these stars.  相似文献   

2.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

3.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   

4.
The B[e] stars are early type stars with hydrogen emission lines, forbidden [FeII] and [OI] emission lines, and with an IR excess due to circumstellar dust. These properties may occur in stars of quite different evolutionary stages. In fact, the group of B[e] stars is very inhomogeneous, and contains pre-main sequence stars, supergiants with disks, compact planetary nebulae, symbiotic stars, and a group of stars with unclear evolutionary phase. The book gives the proceedings of a workshop in Paris in 1997 in which the properties and evolutionary phases of the B[e] stars are discussed. It contains chapters on: (1) the definition of B[e] stars, (2) distances, kinematics and the distribution in our Galaxy, (3) spectroscopy, (4) infrared properties, (5) photometry, polarimetry and variability, (6) models for winds and disks, (7) evolutionary stages, (8) revised classification of B[e] stars. The book ends with an object list of all B[e] stars. The book is very useful for students and researchers of hot star winds and gives nice overviews of the observations and theories and remaining puzzles of these strange objects with winds and outflowing dust-forming disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We have obtained the first UV high resolution spectra of hot luminous stars in M31 with the FOS onHubble Space Telescope. The spectra, combined with optical spectroscopic and photometric observations, enable us to study their stellar winds and photospheric parameters. We derive mass-loss rates and velocity laws from the wind line profiles, with the SEI method, as well as information on abundances. The wind lines and photospheric spectra are compared with galactic stars of the same spectral type.The spectra analyzed so far indicate that the stars have mass-loss rates comparable or slightly lower than galactic stars of the same spectral type, but possibly different velocity laws in their winds. The spectra of two stars are discussed here.  相似文献   

6.
Although static loop models are often used to describe the structure of coronal loops, it is evident on both observational and theoretical grounds that mass motions play a crucial role in the physics of the corona and transition region. First we review the observations of emission-line broadening and wavelength shifts, which imply the presence of random motions and systematic downflows in coronal loops. Some discrepancies in the observations are discussed. It is argued that velocities due to gas pressure gradients are the most likely explanation for the observed flows. A number of models that have been proposed for these motions are reviewed. The implications of the various models on observations of the corona and transition region by SOHO are discussed.  相似文献   

7.
The advent of the grating spectrometers onboard Chandra and XMM-Newton opened up a new era in plasma diagnostics of compact binaries. High resolution spectroscopy using these spectrometers is of particular use in investigating accretion plasmas in cataclysmic variables (CVs) because they show a wealth of emission lines owing to their optically thin thermal nature. In this review, I present recent progress on density measurements of the plasma in magnetic CVs by means of He-like triplet and iron L lines, and the outcome of line velocity measurements in the dwarf nova SS Cygni in outburst, to demonstrate the potential power of high resolution spectroscopy to elucidate the geometry of the plasma. In the end, our expectations for the Soft X-ray Spectrometer onboard the forthcoming X-ray mission Astro-H are summarized.  相似文献   

8.
9.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

10.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

11.
We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from C?v to Si?xiii) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like lines, will provide additional valuable diagnostics to determine electronic temperature, ionic fraction, departure from ionization equilibrium and/or from Maxwellian electron distribution.  相似文献   

12.
The current status of the theory of a new astrophysical phenomenon, aradiation-driven diskon, is outlined.The cyclotron radiation pressure around sufficiently hot, strongly magnetized white dwarfs and neutron stars is shown to be able to drive a wind from the photosphere and support a plasma envelope in the closed part of the magnetosphere. The magnetohydrostatic configuration of an optically thin, radiatively supported plasma envelope is determined. It consists of an equatorial disk in the region where the cyclotron radiation force exceeds the local force of gravity and a closed shell near the equilibrium surface where the radiation pressure equals gravity. The effects of finite optical depth on the behaviour of the magnetospheric plasma and the influence of the envelope on the observed radiation are discussed.Classes of magnetic degenerate stars are pointed out in which radiation-driven diskons may be found. The best candidates are two individual stars, the strongly magnetized white dwarfs GD 229 and PG 1031+234. Both exhibit broad and deep depressions in the ultraviolet which are explained as a result of cyclotron scattering by an optically thick radiation-driven envelope in the inhomogeneous magnetic field of the star. We predict a temporal and spectral variability of these features due to non-stationary plasma motions in the envelope.  相似文献   

13.
We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.  相似文献   

14.
The future X-ray missions for high resolution spectroscopy are briefly reviewed. ASTRO-H, planned for launch in 2014, will introduce microcalorimeters for the first time and reveal dynamical motions of hot gas in extended objects. High resolution spectroscopy will also be used for the search of missing baryons with oxygen lines in the local universe. Dedicated X-ray missions are also planned. A very large X-ray observatory IXO, under joint study of NASA, ESA and JAXA, will explore the evolution of the universe using X-ray spectroscopy as a very powerful tool.  相似文献   

15.
In a paper submitted to A&A we present the first line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. This paper is complementary to the submitted paper. Here, we emphasize the advantages and the weak points of our approach and we present additional technical aspects.The models are characterised by a simultaneous solution of the equation of motion, the non-LTE populations of H and He, and radiation transfer in a line blanketed atmosphere. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. The radiative forces are evaluated consistently with the depth-dependent radiation field, taking into account multiple scattering by metal lines and line overlap.  相似文献   

16.
The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40–50% to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.  相似文献   

17.
Goedbloed  J.P. 《Space Science Reviews》2003,107(1-2):353-360
The properties of magnetohydrodynamic waves and instabilities of laboratory and space plasmas are determined by the overall magnetic confinement geometry and by the detailed distributions of the density, pressure, magnetic field, and background velocity of the plasma. Consequently, measurement of the spectrum of MHD waves (MHD spectroscopy) gives direct information on the internal state of the plasma, provided a theoretical model is available to solve the forward as well as the inverse spectral problems. This terminology entails a program, viz. to improve the accuracy of our knowledge of plasmas, both in the laboratory and in space. Here, helioseismology (which could be considered as one of the forms of MHD spectroscopy) may serve as a luminous example. The required study of magnetohydrodynamic waves and instabilities of both laboratory and space plasmas has been conducted for many years starting from the assumption of static equilibrium. Recently, there is a outburst of interest for plasma states where this assumption is violated. In fusion research, this interest is due to the importance of neutral beam heating and pumped divertor action for the extraction of heat and exhaust needed in future tokamak reactors. Both result in rotation of the plasma with speeds that do not permit the assumption of static equilibrium anymore. In astrophysics, observations in the full range of electromagnetic radiation has revealed the primary importance of plasma flows in such diverse situations as coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies. These flows have speeds which substantially influence the background stationary equilibrium state, if such a state exists at all. Consequently, it is important to study both the stationary states of magnetized plasmas with flow and the waves and instabilities they exhibit. We will present new results along these lines, extending from the discovery of gaps in the continuous spectrum and low-frequency Alfvén waves driven by rotation to the nonlinear flow patterns that occur when the background speed traverses the full range from sub-slow to super-fast. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
In this chapter, we will explore the interaction of jets with their environments. Jets can transport a sizable fraction of accretion energy away from black holes and neutron stars. Because they are collimated, they can travel to distances far beyond the gravitational sphere of influence of the black hole. Yet, their interaction with the interstellar and intergalactic medium must eventually halt their advance and dissipate the energy they carry. The termination of the jet, and the inflation of large scale cavities of relativistic plasma offers one of the most powerful ways to constrain the physics of jets. In this chapter, we will review the inflation of radio lobes, the propagation of hot spots, the creation of shells and cavities, and the bending of jet by proper motion through their environment, both in the context of AGN jets and microquasars.  相似文献   

19.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

20.
Interplanetary shock observations since the prior Solar Terrestrial Physics Symposium in 1978 are reviewed. Since the interval coincides with the recent solar maximum, emphasis is placed on shocks associated with transient solar phenomena, including coronal transients and eruptive prominences as well as flares. A good correlation between shocks and Storm Sudden Commencements has persisted into the recent maximum. Shocks have been identified that are associated with disappearing filaments and coronal transients rather than with flares. Significant progress has been made in the indirect observation of shocks near the Sun as a result of radio wave measurements in interplanetary space and measurement of the scintillation and spectral broadening of spacecraft radio transmissions. Preliminary results regarding the thickness of interplanetary shocks have appeared. Several quasi-parallel shocks propagating more nearly along, rather than across, the magnetic field have been identified. The plasma drivers accompanying interplanetary shocks have received increased attention and distinctive features have been found in electron, ion and magnetic field data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号