首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.  相似文献   

2.
Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.  相似文献   

3.
High spectral resolution X-ray instruments on powerful X-ray satellites (e.g. Chandra, XMM-Newton) pointed through dust and gas at bright black holes and neutron stars can be used to study dust and intervening material in unique ways. With the new subfield of Condensed Matter Astrophysics as its goal, I will discuss current efforts to combine techniques and knowledge from condensed matter physics and astrophysics to determine the species-specific quantity and composition of interstellar gas and dust in the ISM and ionized environments. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters.  相似文献   

4.
The Midcourse Space Experiment (MSX) is a multiple objective experiment scheduled to fly by the end of 1994. Infrared photometry and interferometry will be obtained by a solid hydrogen cooled, off-axis telescope of 35 cm unobscured primary aperture. The sensitivities of the line scanned arrays are comparable to IRAS bands 1 and 2 but the spatial resolution is some 30 times better. Nine broadly defined astronomy experiments are planned for the 18 month cryogen phase of the mission. Four of these experiments survey regions not adequately covered by previous infrared missions: the zodiacal cloud near the sun and the anti-solar direction, the Galactic Plane where IRAS sensitivities were limited by confusion and the gaps left by the IRAS survey. The higher sensitivity obtained from raster scans will probe Galactic structure and create intermediate spatial resolution maps of extended sources such as HII regions, the Magellanic Clouds and nearby galaxies. Measurements are also planned on a number of solar system objects such as planets, asteroids, the dust bands, comets and cometary debris trails. Moderate resolution spectra of a number of bright, discrete, extended sources will be obtained as well as low resolution spectral mapping along the Galactic Plane and Zodiacal dust cloud.  相似文献   

5.
ESA??s hard X-ray and soft gamma-ray observatory INTEGRAL is covering the 3 keV to 10 MeV energy band, with excellent sensitivity during long and uninterrupted observations of a large field of view (??100 square degrees), with ms time resolution and keV energy resolution. It links the energy band of pointed soft X-ray missions such as XMM-Newton with that of high-energy gamma-ray space missions such as Fermi and ground based TeV observatories. Key results obtained so far include the first sky map in the light of the 511 keV annihilation emission, the discovery of a new class of high mass X-ray binaries and detection of polarization in cosmic high energy radiation. For the foreseeable future, INTEGRAL will remain the only observatory allowing the study of nucleosynthesis in our Galaxy, including the long overdue next nearby supernova, through high-resolution gamma-ray line spectroscopy. Science results to date and expected for the coming mission years span a wide range of high-energy astrophysics, including studies of the distribution of positrons in the Galaxy; reflection of gamma-rays off clouds in the interstellar medium near the Galactic Centre; studies of black holes and neutron stars particularly in high- mass systems; gamma-ray polarization measurements for X-ray binaries and gamma-ray bursts, and sensitive detection capabilities for obscured active galaxies with more than 1000 expected to be found until 2014. This paper summarizes scientific highlights obtained since INTEGRAL??s launch in 2002, and outlines prospects for the INTEGRAL mission.  相似文献   

6.
Galaxy clusters are ideal tracers of the large-scale structure and evolution of the universe. They are thus good probes for the matter content of the universe, the existence of dark matter, and for the statistics of the large-scale structure of the matter distribution. X-ray observations provide a very effective tool to characterize individual galaxy clusters as well as the cluster population. With the detailed analysis of X-ray observations of galaxy clusters the matter composition of clusters is obtained which can be taken as representative of the matter composition of the universe. Based on galaxy cluster surveys in X-rays a census of the galaxy cluster population and statistical measures of the spatial distribution of clusters is obtained. Comparison of the results with predictions from cosmological models yields interesting cosmological model constraints and in particular favours a low density universe.  相似文献   

7.
Background on the space exploration program is discussed, and the currently identified NASA exploration missions are contrasted with the missions that were being planned a year ago. Developments in high-efficiency dynamic radioisotope power systems are discussed: and Brayton and Stirling power conversion cycles are compared for the missions planned for the next decade. Issues related to the use of high-efficiency radioisotope (HER) power systems are identified. It is noted that HER power systems are approximately three times as efficient as current radioisotope thermoelectric generators(RTGs) and are therefore significantly cheaper. Additionally, the world's supply of 238Pu is extremely limited. Currently discussed missions would cut deeply into this supply if powered by RTGs  相似文献   

8.
We briefly review some questions of extragalactic astrophysics and cosmology that would most benefit from future missions outside the Earth's atmosphere in the IR and submillimeter. These include the formation and early evolution phases in galaxies and the probably related question of quasar formation; the observation of Active Galactic Nuclei embedded in thick dusty structures (torii) and its impact on the still debated unified model of AGN activity; the observability of radiation processes occurring at very highz through background measurements; the investigation of the large scale structure and velocity field in the distant universe; and studies of the interstellar medium in galaxies. Some more emphasis is given on the galaxy formation problem, because we believe that IR-mm sensitive observations will be crucial to its final solution.  相似文献   

9.
Microscope Instrument Development,Lessons for GOCE   总被引:2,自引:0,他引:2  
Touboul  Pierre 《Space Science Reviews》2003,108(1-2):393-408
Two space missions are presently under development with payload based on ultra-sensitive electrostatic accelerometers. The GOCE mission takes advantage of a three axis gradiometer accommodated in a very stable thermal case on board a drag-free satellite orbiting at a very low altitude of 250 km. This ESA mission will perform the very highly accurate mapping of the Earth gravity field with a geographical resolution of 100 km. The MICROSCOPE mission is devoted to the test of the “Universality of free fall” in view of the verification of the Einstein Equivalence Principle (EP) and of the search of a new interaction. The MICROSCOPE instrument is composed of two pairs of differential electrostatic accelerometers and the accelerometer proof-masses are the bodies of the EP test. The satellite is also a drag-free satellite exhibiting a fine attitude control and in a certain way, each differential accelerometer is a one axis gradiometer with an arm of quite null length. The development of this instrument much interests the definition and the evaluation of the sensor cores of the gradiometer. The in flight calibration process of both instruments is also very similar. Lessons form these parallel developments are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
An interview with Carl Pilcher, science program director for solar system exploration at NASA, examines NASA's past, present, and planned missions to explore the solar system. Specific questions relate to the status of current and planned missions, science results of the Pathfinder mission to Mars, cooperation with the Japanese space agency, the status of the search for extraterrestrial life in solar system meteoroids and asteroids, mission size for more in-depth exploration, reports of water on the moon, and the exploration of near-Earth objects.  相似文献   

11.
The sea surface topography observed by satellite altimetry is a combination of the geoid and of the ocean dynamic topography. Satellite altimetry has thus the potential to supply quasi-global maps of mean sea surface heights from which the mean geostrophic surface ocean currents can be derived, provided that the geoid is known with a sufficient absolute accuracy. At present, however, given the limited accuracy of the best available geoid, altimetric mean sea surface topographies have been derived only up to degree 15 or so, i.e. for wavelengths of approximately 2000 km and larger. CHAMP, GRACE, and the future GOCE missions are dedicated to the improvement of the Earth's gravity field from space. Several studies have recently investigated the impact of these improvements for oceanography, concluding to reductions of uncertainties on the oceanic flux estimates as large as a factor of 2 in the regions of intense an narrow currents. The aim of this paper is to focus on what are the typical horizontal scales of the mean dynamic topography of the ocean, and to compare their characteristics to the error estimates expected from altimetry and these future geoids. It gives also an illustration of the oceanic features that will be resolved by the combination of altimetry and the GRACE and GOCE geoids. It further reassesses the very demanding requirements in term of accuracy and resolution agreed in the design of these new gravity missions for ocean science applications. The present study relies on recent very high-resolution numerical Ocean General Circulation Model simulations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
13.
The ISO mission is expected to allow significant progress in the study of Solar-System objects, especially concerning planetary and cometary atmospheres. Beyond ISO, future Solar-System studies using infrared space missions will require an extension of the spectral coverage toward longer wavelengths and increased spatial capabilities for imaging spectroscopy.  相似文献   

14.
This paper introduces Raman spectroscopy and discusses various scenarios where it might be applied to in situ planetary missions. We demonstrate the extensive capabilities of Raman spectroscopy for planetary investigations and argue that this technique is essential for future planetary missions.  相似文献   

15.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   

16.
Gamma-ray lines are the fingerprints of nuclear transitions, carrying the memory of high energy processes in the universe. Setting out from what is presently known about line emission in gamma-ray astronomy, requirements for future telescopes are outlined. The inventory of observed line features shows that sources with a wide range of angular and spectral extent have to be handled: the scientific objectives for gamma-ray spectroscopy are spanning from compact objects as broad class annihilators, over longlived galactic radioisotopes with hotspots in the degree-range to the extremely extended galactic disk and bulge emission of the narrow e-e+ line.The instrumental categories which can be identified in the energy range of nuclear astrophysics have their origins in the different concepts of light itself: geometrical optics is the base of coded aperture systems — these methods will continue to yield adequate performances in the near future. Beyond this, focusing telescopes and Compton telescopes, based on wave- and quantum- optics respectively, may be capable to further push the limits of resolution and sensitivity.  相似文献   

17.
Conclusion The lunar photography missions have included flyby, impacter, lander, and orbiter spacecrafts. These missions have provided photographs of the far side of the moon and a ten-fold increase in frontside resolution plus higher resolution of selected frontside areas. The resolutions which have been achieved vary from 1 m for the Lunar Orbiter to 1/2 m for the impacting Ranger to millimeters for Luna-IX and the Surveyors. The return from these missions have resolved much of the mystery surrounding the moon.The prime objective of the U.S. photographic missions has been the support of the Apollo-manned lunar landing program. The Ranger program, the Surveyor program, and the Lunar Orbiter program provided a logical progression in the utilization of a developing space exploration technology. These programs have provided the required information and have confirmed that the Apollo landing vehicle design is compatible with the conditions to be experienced on selected areas of the lunar surface.The future manned landing missions can be expected to provide additional lunar photography. Since the astronauts can be more selective in their photography, even more outstanding and informative results should be achieved. The addition of movies and even live television coverage will permit earth-based man to share more directly in the manned exploration of the moon.The unmanned photographic exploration of the moon has provided much of the technology required for similar missions to the planets. The U.S. Mariner-IV was the first successful mission to obtain close-up photographs of the planet Mars. It can be expected that both the U.S.A. and Russia will try for further photographic successes in the exploration of our solar system.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

18.
In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.  相似文献   

19.
基于遗传算法的无人机协同侦察航路规划   总被引:7,自引:0,他引:7  
无人机将成为侦察卫星、有人驾驶侦察机的重要补充与增强手段 ,成为未来战场上广泛应用的一种侦察工具。为了提高无人机 (UAV)的侦察效率 ,在执行侦察任务前必需规划设计出高效的无人机侦察飞行航路。针对这一问题 ,本文提出了一种侦察效率指标评估的计算方法 ,解决了航路规划中的侦察效率量化问题。考虑在大范围任务区域内进行侦察航路优化存在计算的复杂性和收敛性等问题 ,本文采用遗传算法对侦察航路进行了优化处理。通过该方法得到的侦察航路可以有效地提高无人机的侦察效率。  相似文献   

20.
The advent of the grating spectrometers onboard Chandra and XMM-Newton opened up a new era in plasma diagnostics of compact binaries. High resolution spectroscopy using these spectrometers is of particular use in investigating accretion plasmas in cataclysmic variables (CVs) because they show a wealth of emission lines owing to their optically thin thermal nature. In this review, I present recent progress on density measurements of the plasma in magnetic CVs by means of He-like triplet and iron L lines, and the outcome of line velocity measurements in the dwarf nova SS Cygni in outburst, to demonstrate the potential power of high resolution spectroscopy to elucidate the geometry of the plasma. In the end, our expectations for the Soft X-ray Spectrometer onboard the forthcoming X-ray mission Astro-H are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号