首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TARANIS “Tool for the Analysis of RAdiations from lightNIngs and Sprites” is a CNES satellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere and the space environment. Such impulsive transfers of energy, identified by the observation at ground and in space (rocket, balloons, FORMOSAT 2 satellite) of Transient Luminous Events (TLEs) and the detection on satellites (CGRO, RHESSI) of Terrestrial Gamma ray Flashes (TGFs), are likely to occur in other astrophysical environments as well. The TARANIS mission and instrumentation is presented. The way the TARANIS programme (associated ground-based and balloon-based measurements included) may answer questions about the physics of TLEs and TGFs is examined. The questions addressed include: TLEs and TGFs source regions, associated phenomena, transfers of energy between the radiation belts and the atmosphere, TLEs and TGFs generation mechanisms, input parameters to the modelling of the variation of the atmosphere and the electric circuit.  相似文献   

2.
The European Space Agency's (ESA) multipurpose satellite tracking system is introduced. The system is able to perform accurate satellite ranging and Doppler measurements for a variety of mission types, i.e., from near-Earth satellites to deep space probes. The ranging signal is analyzed and described in an analytical manner from which the limits of the system performance are derived. A model of the overall system is presented and a few simulation results obtained thereby are compared with measurements performed with the ESA's Giotto and Hipparcos scientific missions  相似文献   

3.
随着多模全球卫星导航系统(GNSS)高精度应用需求的日益增长,频间钟偏差(IFCB)问题近年来得到广泛研究。基于2023年年积日(DOY)(130~136)澳大利亚地区18个多模实验跟踪网(MGEX)观测数据的无几何无电离层(GFIF)组合,分别估计了北斗卫星导航系统(BDS)、伽利略卫星导航系统(Galileo)和全球定位系统(GPS)卫星的 IFCB 产品。对比分析了BDS-2,BDS-3,Galileo和GPS卫星的IFCB的特点。评估了相位相关的IFCB(PIFCB)误差对GPS BLOCK IIF卫星超宽巷(EWL)未校准相位硬件延迟(UPD)和非组合(UC)三频精密单点定位(PPP)性能的影响。实验结果表明,PIFCB误差对Galileo卫星的影响最小,对GPS BLOCK IIF卫星的影响最大;对BDS-3卫星的影响低于BDS-2卫星;不同信号频率对IFCB产品的估计结果会产生一定的影响。实验结果进一步表明,IFCB产品可以显著提高GPS BLOCK IIF卫星EWL UPD的稳定性和UC三频PPP的定位性能。EWL UPD的平均标准差(STD)从0.064周减小到0.021周,提高了67.2%。UC三频PPP在东(E)、北(N)、天顶(U)三方向分别从4.63 cm,3.04 cm和8.76 cm减小到3.08 cm,2.00 cm和5.85 cm,平均定位精度分别提高了31.5%,34.2%和33.2%。收敛时间小于20 min的比例从66.3%提高到71.8%,提高了5.5%。平均收敛时间从21.13 min缩短到17.24 min,减少了18.4%。  相似文献   

4.
《中国航空学报》2016,(5):1335-1344
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.  相似文献   

5.
Wolf  Aron A. 《Space Science Reviews》2002,104(1-4):101-128
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The orbiter flies a series of orbits, incorporating flybys of the Saturnian satellites, called the ‘satellite tour.’ During the tour, the gravitational fields of the satellites (mainly Titan) are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for a diverse set of science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini over a period of several years to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission. A sample tour is presented illustrating the application of tour design strategies developed for Cassini. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The High-Definition television (HDTV) system onboard the Japanese lunar explorer Kaguya (SELENE) consists of a telephotographic camera and a wide-angle camera that each have 2.2 M-pixel IT-CCDs (interline transfer charge-coupled devices) and LSIs (large-scale integrated circuits) of the several-million-gates class. One minute-long motion pictures acquired by the HDTV system at 30 fps (frames per second) are recorded in a 1 GB semiconductor memory after compression, and then transmitted to a ground station. In the development of the space-going HDTV system, a commercial ground-model HDTV system was extensively modified and evaluated for its suitability to withstand the harsh environment of space through environmental tests. The HDTV acquired a total of 6.3 TB of movies and still images of the Earth and the Moon over the mission period that started on September 29, 2007, and ended on June 11, 2009. Footage of an “Earth-rise” and an “Earth-set” on the lunar horizon were captured for the first time by the HDTV system. During a lunar eclipse, images of the Earth’s “diamond ring” were acquired for the first time. The CCDs and the instruments used in the system remained in good working order throughout the mission period, despite the harsh space environment, which suggests a potential new approach to the development of instruments for use in space.  相似文献   

7.
针对低轨空间科学卫星在轨任意姿态无固定对天面造成的无法连续GPS(Global Positioning System,全球定位系统)定位的问题,在HXMT(Hard X-ray Modulation Telescope,硬X射线调制望远镜)卫星中提出了星载全空间可见的GPS接收系统,并指出了双天线多径干扰对定位精度的影响。建立模型,对双天线下主瓣直达信号和后瓣镜像干扰信号叠加合成的信号进行定位精度分析,结果表明,空间中83.3%以上的GPS卫星信号对该系统带来的定位误差影响不大于单天线的定位误差影响。通过半物理动态仿真验证以及外场试验进行验证,实际工程测试数据结果表明采用剔星策略后定位精度提高约13.4%。从而证明了星载全空间可见的GPS接收系统方案的正确性,并可广泛应用于工程实际。  相似文献   

8.
Possible Future Use of Laser Gravity Gradiometers   总被引:1,自引:0,他引:1  
Bender  P. L.  Nerem  R. S.  Wahr  J. M. 《Space Science Reviews》2003,108(1-2):385-392
With the GRACE mission under way and the GOCE mission well along in the design process, detailed questions concerning the type of future mission that may follow them have arisen. It is generally agreed that determining the time variations in the Earth's gravity field with as high spatial and temporal resolution as is feasible will be the main driver for such a mission. The possible use of laser heterodyne measurements between separate satellites in such a mission has been discussed by a number of people. The first suggestion of emphasizing time variation measurements in a laser mission was the TIDES concept presented in 1992 by Colombo and Chao. Then, in 2000, a GRACE Follow-On mission using laser measurements between two drag-free satellites was discussed by Watkins el al. (2000). More recently, the possibility of utilizing laser measurements between more than two satellites in order to determine two or more components of the gravity gradient tensor simultaneously has been proposed by Balmino. This approach may be desirable in order to reduce the aliasing of time variations between geopotential terms of different degree and order, as well as to improve the resolution in longitude, despite the cost of the additional satellites. In this paper, we discuss specific possible mission geometries for measuring the two diagonal in-plane components of the gravity gradient tensor simultaneously. This could be done, for example, by laser heterodyne measurements between two pairs of satellites in coplanar and nearly polar orbits. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The Saturnian system contains 18 known satellites ranging from 10 km to 2575 km in radius. In bulk properties and surface appearance these objects show less regularity than the sparser Jupiter system. The Galilean-sized moon Titan sports a dense atmosphere of nitrogen and methane which renders surface observations difficult, but also makes this moon intriguing from the standpoints of climate change and exobiology. The Cassini-Huygens mission will make extensive observations of the satellites over a range of wavelengths, as well as using in-situ sampling of satellite environments (and in the case of Titan, sampling of atmosphere and surface). The goals of these extensive investigations are to understand the bulk properties of the satellites, their surface compositions and evolution through time, as well as interactions with the magnetosphere and rings of Saturn. This knowledge in turn should provide a deeper understanding of the origin of the Saturnian system as a whole and underlying causes for the distinctive differences from the Jovian satellite system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
基于执行时段滑动调整策略的中继卫星任务规划算法设计   总被引:1,自引:0,他引:1  
针对中继卫星任务规划问题开展研究,提出一种基于执行时段滑动调整策略的任务规划算法。首先分析了中继卫星资源调度过程,并对任务申请的时间特征进行形式化描述,然后归纳出任务分配的主要约束,从而完成问题建模。在此基础上,对优化算法进行设计,给出了执行时段滑动调整步骤。通过调整已规划任务执行时段的方法,使部分原本无法执行任务具备执行可能,提升了任务执行率和资源利用率。在仿真实验中,通过大规模测试分析对比不同算法的优化效果,验证了文中所提方法的有效性。  相似文献   

11.
下一代数据中继卫星系统发展思考   总被引:1,自引:0,他引:1  
通过系统阐述中继卫星系统的发展过程,给出了主要国家和组织的中继卫星系统技术体制和现状.再结合卫星、载人航天器和深空探索的未来发展趋势,分析了下一代中继卫星系统的发展需求.在此基础上,从体系结构、卫星平台、链路调制体制、网络协议等方面,探讨并给出了下一代中继卫星系统的发展趋势和技术途径.为满足未来近地、深空航天任务,以及临近、低空快速移动用户的不同要求,节约系统成本,下一代中继卫星系统将向专业化和与其他系统融合的方向发展:星间链路将增加激光链路,数据速率可达到10 Gbit/s以上;多址业务成为主用,同时支持用户数能力将极大提高;对于链路调制体制,在采用CR(Cognitive Radio,认知无线电)和SDR(Software Defined Radio,软件定义无线电)技术的基础上,可实现实时自适应调整和根据需求加载配置;数据传输将采用网络化方式,天地间构成一体化DTN(Delay Tolerant Network,容延迟网络).  相似文献   

12.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

13.
14.
建立了基于双星定位系统距离和观测数据的近地卫星联合定轨模型,设计了相应的数值融合联合定轨算法;为进一步提高近地卫星定轨精度,考虑融合双星及备份星距离和观测数据,建立了基于双星和备份星的近地卫星联合定轨模型及实现算法,并针对不同仿真条件进行了联合定轨仿真实验。仿真计算结果表明,联合定轨方式较传统近地卫星精密定轨方式可以更好地抑制双星星历误差对近地卫星定轨精度的影响,近地卫星和双星的定轨精度均得到了一定程度的提高;同时,融合备份星观测数据的近地卫星联合定轨精度得到进一步改善,达到5.17m。  相似文献   

15.
首先介绍成像观测卫星调度问题的特点和主要约束,将成像观测卫星调度分为调度预处理、调度模型及求解、调度结果评估3个阶段。在此基础上,论述成像观测卫星调度模型,并采用列生成法,将多卫星调度问题分解为集合分割主问题和单卫星调度子问题,通过循环迭代来求解调度模型。最后,针对本文提出的算法设计一个问题实例,并给出算法计算结果。结果分析表明,本文提出的模型和算法能较好解决实际应用问题。  相似文献   

16.
17.
ESA's first multi-satellite mission Cluster is unique in its concept of 4 satellites orbiting in controlled formations. This will give an unprecedented opportunity to study structure and dynamics of the magnetosphere. In this paper we discuss ways in which ground-based remote-sensing observations of the ionosphere can be used to support the multipoint in-situ satellite measurements. There are a very large number of potentially useful configurations between the satellites and any one ground-based observatory; however, the number of ideal occurrences for any one configuration is low. Many of the ground-based instruments cannot operate continuously and Cluster will take data only for a part of each orbit, depending on how much high-resolution (burst-mode') data are acquired. In addition, there are a great many instrument modes and the formation, size and shape of the cluster of the four satellites to consider. These circumstances create a clear and pressing need for careful planning to ensure that the scientific return from Cluster is maximised by additional coordinated ground-based observations. For this reason, the European Space Agency (ESA) established a working group to coordinate the observations on the ground with Cluster. We will give a number of examples how the combined spacecraft and ground-based observations can address outstanding questions in magnetospheric physics. An online computer tool has been prepared to allow for the planning of conjunctions and advantageous constellations between the Cluster spacecraft and individual or combined ground-based systems. During the mission a ground-based database containing index and summary data will help to identify interesting datasets and allow to select intervals for coordinated studies. We illustrate the philosophy of our approach, using a few important examples of the many possible configurations between the satellite and the ground-based instruments.  相似文献   

18.
The NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) project is intended to investigate magnetospheric substorm phenomena, which are the manifestations of a basic instability of the magnetosphere and a dominant mechanism of plasma transport and explosive energy release. The major controversy in substorm science is the uncertainty as to whether the instability is initiated near the Earth, or in the more distant >20 Re magnetic tail. THEMIS will discriminate between the two possibilities by using five in-situ satellites and ground-based all-sky imagers and magnetometers, and inferring the propagation direction by timing the observation of the substorm initiation at multiple locations in the magnetosphere. An array of stations, consisting of 20 all-sky imagers (ASIs) and 30-plus magnetometers, has been developed and deployed in the North American continent, from Alaska to Labrador, for the broad coverage of the nightside magnetosphere. Each ground-based observatory (GBO) contains a white light imager that takes auroral images at a 3-second repetition rate (“cadence”) and a magnetometer that records the 3 axis variation of the magnetic field at 2 Hz frequency. The stations return compressed images, “thumbnails,” to two central databases: one located at UC Berkeley and the other at the University of Calgary, Canada. The full images are recorded at each station on hard drives, and these devices are physically returned to the two data centers for data copying. All data are made available for public use by scientists in “browse products,” accessible by using internet browsers or in the form of downloadable CDF data files (the “browse products” are described in detail in a later section). Twenty all-sky imager stations are installed and running at the time of this publication. An example of a substorm was observed on the 23rd of December 2006, and from the THEMIS GBO data, we found that the substorm onset brightening of the equatorward arc was a gradual process (>27 seconds), with minimal morphology changes until the arc breaks up. The breakup was timed to the nearest frame (<3 s) and located to the nearest latitude degree at about ±3oE in longitude. The data also showed that a similar breakup occurred in Alaska ~10 minutes later, highlighting the need for an array to distinguish prime onset.  相似文献   

19.
我国第一代中继卫星地面应用系统发展建设的思考   总被引:1,自引:0,他引:1  
"天链一号"03星成功入轨标志着我国第一代中继卫星系统基本形成。作为中继卫星运行管理和数据中继服务的主体,地面应用系统发展建设水平直接决定了中继卫星系统应用效益的发挥。在总结地面应用系统现状基础上,分析了现有系统在资源可用率、任务服务模式和任务保障可靠性等方面所面临的形势以及存在的差距,提出了地面应用系统后续发展建设的思路和内容。  相似文献   

20.
Quick position determination using 1 or 2 LEO satellites   总被引:1,自引:0,他引:1  
We describe an approach for a medium accuracy position determination of a user terminal (UT) on the Earth surface, using one or two low Earth orbit (LEO) satellites. The positioning approach is intended to meet the requirements of a worldwide personal communications system using LEO satellites. The basic two requirements are: (1) immediate positioning, and (2) horizontal position accuracy of the order of 10 km. Those requirements stem from the need of the system to know the user's approximate location before it connects his call. The approach makes use of the two-way communication with the UT, which can receive, transmit, and make its own measurements. Delay and Doppler measurements are used in order to enable instantaneous positioning with one satellite, and in order to achieve unambiguous positioning with two satellites. A simplified Globalstar satellite constellation and the expected Globalstar delay and frequency measurement accuracy are used to demonstrate the concept and to evaluate its performances  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号