首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
A number of various physical mechanisms cause aircraft, missiles, and projectiles to he electrically charged during free flight. The electric charge is in the 10-6 C range for aircraft and in the 10-10 C range for projectiles. The electric field thus transported provides information by which measuring the position and velocity of a projectile is possible. A measuring device is described to determine the position of a projectile in free flight while it is passing a target plane. The electric field distribution is measured by means of three electrodes in the manner of metal plates which are positioned in the proximity of the trajectory of the projectile. A mathematical formula can be derived to describe the coherence between the values measured of the electric field strength and the coordinates of the projectile. This measuring device consists of the target plane, 1 × 1 m2 in size, and the electric device controlled by a microprocessor. The measuring system has been tested with projectiles of the 4-30 mm caliber range and at velocities within the 50-1100 m/s range. The accuracy of the coordinates measured was found to be ± 7.5 mm.  相似文献   

2.
The Electric Field Instrument (EFI) for THEMIS   总被引:2,自引:0,他引:2  
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes.  相似文献   

3.
4.
The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.  相似文献   

5.
利用强极值原理将带电导静电场内,外等值面边值问题化为几个常规的椭圆型Dirichlet边值问题,并建立它们相应的第一类Fredholm边界积分方程,由这些方程的解的线性组合可构成原问题的解。  相似文献   

6.
7.
在介绍旋转式电场仪测量电场强度的机理及测量系统构成的基础上,针对在特高压直流输电线路下地面合成电场测量中,各电场仪的输出电压与被测电场强度的特性曲线不一致,外场较恶劣测量环境对测量结果造成干扰影响测量准确度等问题,提出了相应的解决方法(特性曲线归一化处理和双路消噪差动测量法)。所述方法便于用户现场使用,提高了旋转式电场仪抗干扰能力和测量准确度。  相似文献   

8.
张树团  王昉  王晶 《航空计算技术》2011,41(3):113-115,118
为了实现对航空直流电源的快速检测,提出了一种基于虚拟仪器的航空直流电源系统电气参数测试的设计方案,阐述了测试系统的硬件组成和测试系统软件模块。测试系统软件采用LabVIEW软件开发平台,主要由数据采集软件和数据处理软件两部分组成。实际应用表明,各项测试指标均达到了设计要求,系统具有运行稳定可靠、操作方便、维护简单的特点,能够满足航空直流电源的测试需要。  相似文献   

9.
10.
本文采用计算流体力学的方法计算了NACA23012翼型以及安装四个不同高度(1%C、2%C、3%C、4%C)Gumey襟翼翼型的流场,并比较了不同来流马赫数、气流攻角条件下的气动性能.包括升阻比、翼型表面压力系数分布和马赫数分布。计算结果表明,安装Gumey襟翼后翼型的升阻比得到提高,升力分布趋于平均,在所计算的气流条件下安装3%C高度Gumey襟翼的翼型获得了最高的升阻比。  相似文献   

11.
通过一种新型表面自纳米化方法———表面深滚处理,在纯镍(N4)表面制备出晶粒尺寸小于500nm 的梯度超细晶结构,并对材料次表面微观组织结构、残余应力分布及力学性能进行了研究。结果表明:N4经过表面深滚处理,表面形成织构;由于剧烈塑性变形,位错大量产生,并出现胞状组织和高密度位错墙,这些组织经过演化形成超细晶,并在表面形成具有一定厚度的残余压应力场;与原始材料相比,经过表面深滚处理后表面组织硬度提高近一倍;通过合理选择滚压参数,其细化层厚度、硬度、表面粗糙度及残余应力分布均得到不同程度改善。  相似文献   

12.
There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud.The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J z, giving a rate of electroscavenging responsive to the solar wind inputs.There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled clouds droplet freezing can occur by contact ice nucleation, as the evaporation nuclei are electroscavenged. Although quantitative models for the all the cloud microphysical processes that may be involved have not yet been produced, we show that for many clouds, especially those with broad droplet size distributions, relatively high droplet concentrations, and cloud top temperatures just below freezing, this process is likely to dominate over other primary ice nucleation processes. In these cases there are likely to be effects on cloud albedo and rates of sedimentation of ice, and these will depend on J z.For an increase in ice production in thin clouds such as altocumulus or stratocumulus the main effect is a decrease in albedo to incoming solar radiation, and in opacity to outgoing longwave radiation. At low latitudes the surface and troposphere heat, and at high latitudes in winter they cool. The change in meridional temperature gradient affects the rate of cyclogenesis, and the amplitude of planetary waves. For storm clouds, as in winter cyclones, the effect of increased ice formation is mainly to increase the rate of glaciation of lower level clouds by the seeder-feeder process. The increase in precipitation efficiency increases the rate of transfer of latent heat between the air mass and the surface. In most cyclones this is likely to result in intensification, producing changes in the vorticity area index as observed. Cyclone intensification also increases the amplitude of planetary waves, and shifts storm tracks, as observed.In this paper we first describe the production of space charge and the way in which it may influence the rate of ice nucleation. Then we review theory and observations of the solar wind modulation of J z, and the correlated changes in atmospheric temperature and dynamics in the troposphere. The correlations are present for each input, (A, B, and C), and the detailed patterns of responses provide support for the inferred electrical effects on the physics of clouds, affecting precipitation, temperature and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号