首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formulas are derived for the lengths and direction cosines of the semiaxes of error ellipsoids in three-dimensional multilateration, in terms of the rms errors and direction cosines of the distance measurements, for the case in which random measurement errors are normally distributed and systematic errors are negligible. Two-dimensional error ellipses also are discussed.  相似文献   

2.
基于LT-01A卫星星载BDS-3/GPS观测值进行了星载实时精密定轨研究,并重点分析了广播星历旋转误差对实时定轨精度的影响。通过赫尔默特转换评估了所选时段内GPS和BDS-3广播星历轨道旋转误差,显示BDS-3广播星历旋转误差可达-8.7 mas,平均量级较GPS大约2.5倍。BDS-3广播星历经旋转改正后,轨道切向、法向均方根(RMS)误差从25 cm左右提升至10 cm量级,提升幅度超过50%。因此,基于星载BDS-3以及BDS-3/GPS联合的实时定轨精度受BDS-3星历旋转误差影响严重,且主要作用于切向和法向。经过旋转改正后,单独BDS-3实时定轨在切向、法向、径向RMS分别为21.0 cm、10.7 cm及11.2 cm,其切向和法向精度比改正前分别提升15.0%和31.8%;BDS-3与GPS联合定轨进一步提升切向精度至19.4 cm。得益于BDS-3广播星历较高的精度,单BDS-3以及BDS-3/GPS联合的实时定轨在旋转改正前的三维RMS分别为31.9 cm和29.2 cm,较单GPS实时定轨分别提升9.1%和16.8%;添加旋转改正后,其定轨精度分别提升至26.7 ...  相似文献   

3.
Space-based tactical ballistic missile launch parameter estimation   总被引:1,自引:0,他引:1  
The author explores the influence of a priori uncertainties in launch time and trajectory fly-out profiles, along with sensor angle measurement errors, on the estimation of missile launch location and heading angle. An error model is developed to compute the statistics of the estimation errors using a single pair of angle measurements, one from each of two satellites, or both from the same satellite platform. The measurements and estimation methods are described, followed by a derivation of the estimation errors for the hypothetical case of perfect knowledge of trajectory and launch time. Using the ideal case as a framework, the errors are generalized to include trajectory and launch time uncertainties. The results are discussed with the aid of graphics which were run parametrically to highlight important dependencies and sensitivities  相似文献   

4.
Analysis indicates that the rotation of a satellite can cause an error in the range-rate measurements of a two-way Doppler tracking system. The error is proportional to the rotation rate, and the constant of proportionality depends on the polarization of the satellite transponder antennas. Measurements made by ground-based simulation confirmed the analytical prediction.  相似文献   

5.
Rotation method for direction finding via GPS carrier phases   总被引:2,自引:0,他引:2  
A baseline rotation method is proposed for determining the direction of the baseline vector via Global Positioning System (GPS) carrier phase measurements. The space difference technique is adopted to resolve GPS carrier phase cycle ambiguities. Possible applications include the determination of the aiming directions of artillery rockets and the line of sights of tracking radars, etc. For such armaments, the direction findings are important and the rotating mechanisms are well equipped already. A general baseline vector which can be rotated on a two-degree-of-freedom platform is considered first. The relationship among the baseline vector and the two rotation axes is not known. A sequence of rotations is used to change the configuration of the system to find the direction of the baseline. Under different circumstances such as the cases that some orthogonal conditions among the unknown vectors are given, simplified algorithms are devised. To verify our method, software simulation and hardware experiments have been conducted. The simulation outcomes are used to determine the experimental parameters, such as the length of the baseline, the rotation angles etc. The results of repeated hardware experiments show that the sample standard deviation for the azimuth angle and the elevation angle of the 1.35 m baseline vector are 0.91 deg and 1.23 deg, respectively. The GPS receivers employed are Motorola ONCOREs. The errors of the estimated direction angles induced by the inaccuracy of rotation angles, which are unavoidable due to the imperfectness of the mechanical structure, are analyzed as well. Numerical examples for the error analysis are included  相似文献   

6.
The propagation errors caused by the atmosphere are investigated in order to find out the causes of the observed errors in range and range-rate measurements between a ground station and an artificial satellite. The calculations show that the observed errors are mostly caused by the measuring instruments. The propagation errors are mainly caused by increases, decreases, or fluctuations of the refractive index of the atmosphere, and the errors caused by the refraction of the propagation path are about 10 percent of the errors caused by the decrease of the propagation velocity. The tropospheric range errors are less than 150 meters and are approximately expressed by a cotangent function, and they are reduced by about 90 percent through the use of monthly average refractivity profiles of the troposphere. The ionospheric errors are usually negligible at centimeter radio waves (less than 10 cm), and even at decimeter waves or meter waves almost all errors can be removed by the use of two different frequencies on the down-link so that the range can be made independent of frequency.  相似文献   

7.
Butterly [1] presents a Bayesian approach as an alternative to the classical methods for solving the position-finding problem. Butterly assumes that bearing errors are independent and normally distributed with known variances. In the paper, the assumption of known variances is relaxed and it is shown that uncertainty about these variances can be incorporated into the model while also retaining the computational advantages of the Butterly formulation. It is also shown that the Bayes estimate and the classical maximum likelihood estimate will agree in certain cases.  相似文献   

8.
A method to improve satellite tracking accuracy is presented and discussed theoretically and experimentally in terms of two parts: correction for errors of the tracking system and correction of satellite orbit predictions. In the first part, it is concluded that the pointing error of the tracking system can be determined accurately using data from stellar observations, so that correction is possible with an accuracy of about 0.001°. In the second part, it is shown that apparent errors of satellite orbital elements can be deduced from the optical observation of one orbit, and one can track the satellite after the correction with high accuracy for several subsequent orbits. The accuracy is 0.1-0.2 mrad or better for satellites at 1000 km altitude when given orbit prediction accuracy is approximately 1°.  相似文献   

9.
The influence of sudden increases of electron content on the accurate determination of the position of a satellite is investigated based on a spherically stratified ionospheric model. Using the total electron content information from Faraday rotation measurements, a procedure is presented whereby the corrections of satellite position due to the unpredicted electron increase can be accounted for without the need to know the spatial distribution of the additional electrons.  相似文献   

10.
《中国航空学报》2016,(5):1335-1344
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.  相似文献   

11.
以面齿轮传动系统为研究对象,考虑载荷作用下面齿轮传动系统中支撑结构变形和轮齿弹性变形,通过将传动系统变形等效到面齿轮和直齿轮安装误差方向,建立包含当量安装误差的面齿轮多自由度耦合振动分析模型;采用4阶Runge-Kutta法求解了面齿轮传动系统运动微分方程,得到了当量安装误差对面齿轮振动加速度和法向动态啮合力的影响;开展了面齿轮动态特性测试试验,试验结果表明:偏置距误差和轴交角误差引起的面齿轮沿x方向振动加速度大于沿z方向振动加速度;偏置距误差对面齿轮x方向振动加速度的影响大于轴交角误差。   相似文献   

12.
旋转调制技术实现了捷联惯导的高精度长航时导航,但轴系非正交误差的存在影响着导航姿态精度。传统轴系非正交误差补偿方法是针对旋转轴停留在固定位置完成的,提出一种全空间的轴系非正交误差补偿方法,不限定旋转轴的转停位置。试验结果证明该误差补偿方法较传统方法更优,对惯导姿态精度提升明显。  相似文献   

13.
Radio interferometer for geosynchronous-satellite direction finding   总被引:1,自引:0,他引:1  
A radio interferometer capable of azimuth-elevation direction finding for geosynchronous satellites has been developed. The interferometer has two small-diameter antennas and four movable planar mirrors. The movable mirrors reflect the microwaves from the satellite and guide them to the fixed receiving antennas. Two of the movable mirrors are mounted on a rotary arm, so that the baseline of the interferometer can rotate in the horizontal plane. This configuration enables the interferometer to eliminate phase-ambiguity problems and cable-phase errors, resulting in a direction finding accuracy of better than 0.01 deg in the Ku band.  相似文献   

14.
本设计在整星不能提供硬件秒脉冲的情况下,利用单片机对1553B总线协议芯片进行配置,使其只对星时数据产生中断.该中断触发外围电路自主产生硬件秒脉冲信号,进而实现校时.由于该方法为纯硬件的触发控制环节,在不考虑卫星平台发送星时数据随机误差的情况下,其误差仅取决于硬件的延时误差,通过标定可达到与整星提供秒脉冲相同的校时精度,而大大优于不采用校时的情况.此外,该成果通过对触发电路外围进行配置,可以实现任意脉宽及方向的秒脉冲信号输出,可满足不同型号对不同类型秒脉冲信号的需求,具有很大的灵活性及广泛的适用性.  相似文献   

15.
宁晓琳  梁晓钰  孙晓函  王帆  王龙华  房建成 《航空学报》2020,41(8):623536-623536
星光折射天文导航是一种重要的地球卫星自主导航方式,量测量是影响其导航精度的重要因素。在地球卫星星光折射导航中,折射视高度、星光折射角、折射星像素坐标(折射星矢量)是3种常用的量测量,结合星光折射导航的基本原理重点介绍了这3种量测量的获取方法和量测模型,通过仿真和可观性分析比较了相同条件下3种量测量的导航性能。仿真结果表明,由于折射星像素坐标可以同时反映星光折射的大小和方向可观性高,而星光折射角和折射视高度仅能反映星光折射的大小,无法反映其方向可观性低,因此折射星像素坐标的导航性能优于星光折射角和折射视高度。此外,本文也对星敏感器精度、卫星轨道高度、星敏感器安装夹角3种因素对3种方法导航性能的影响进行了分析。  相似文献   

16.
Tidal Models in a New Era of Satellite Gravimetry   总被引:3,自引:0,他引:3  
Ray  R. D.  Rowlands  D. D.  Egbert  G. D. 《Space Science Reviews》2003,108(1-2):271-282
The high precision gravity measurements to be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth's geoid by amounts that far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here to determine the standard errors in current ocean tide models. At long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used to improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Variability of GPS satellite differential group delay biases   总被引:10,自引:0,他引:10  
An important issue in determining the accuracy of global positioning system (GPS) satellite ionospheric measurements is the instrumental delay biases between the L-band frequencies in both the satellites and the receivers. These differential L1-L2 biases must be measured and removed from the GPS measurements before an accurate estimate of the total electron content can be obtained. The results from the measurements indicate that the day-to-day variations of the satellite differential biases are quite well over a five-week time span, with a variation of less than 0.3-ns differential delay (one sigma). A follow-up experiment conducted two years later showed that the satellite biases had not changed significantly over this longer time span. When the prelaunch calibration values are compared with the experimental bias estimates, two of the four satellite pairs show excellent agreement and two differ significantly, indicating that prelaunch calibrations should be used with caution.<>  相似文献   

18.
PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT   总被引:3,自引:0,他引:3  
An electron analyser to measure the three-dimensional velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV on the four spacecraft of the Cluster mission is described. The instrument consists of two sensors with hemispherical electrostatic energy analysers with a position-sensitive microchannel plate detectors placed to view radially on opposite sides of the spacecraft. The intrinsic energy resolutions of the two sensors are 12.7% and 16.5% full width at half maximum. Their angular resolutions are 2.8° and 5.3° respectively in an azimuthal direction and 15° in a polar direction. The two sensors will normally measure in different overlapping energy ranges and will scan the distribution in half a spacecraft rotation or 2 s in the overlapped range. While this is the fastest time resolution for complete distributions, partial distributions can be recorded in as little as 62.5 ms and angular distributions at a fixed energy in 7.8 ms. The dynamic range of the instrument is sufficient to provide accurate measurements of the main known populations from the tail lobe to the plasmasheet and the solar wind. While the basic structure of the instrument is conventional, special attention has been paid in the design to improving the precision of the instrument so that a relative accuracy of the order of 1% could be attained in flight in order to measure the gradients between the four spacecraft accurately; to decreasing the minimum energy covered by this technique from 10 eV down to 1 eV; and to providing good three dimensional distributions.  相似文献   

19.
In order to simultaneously attack a target with impact angle constraint in threedimensional(3-D) space, a novel distributed cooperative guidance law for multiple missiles under directed communication topologies is proposed without radial velocity measurements. First, based on missiles-target 3-D relative motion equations, the multiple missiles cooperative guidance model with impact angle constraint is constructed. Then, in Line-of-Sight(LOS) direction, based on multiagent system cooperative control theory, one guidance law with directed topologies is designed with strict proof, which can guarantee finite time consensus of multiple missiles' impact times. Next, in elevation direction and azimuth direction of LOS, based on homogeneous system stability theory and integral sliding mode control theory, two guidance laws are proposed respectively with strict proof, which can guarantee LOS angles converge to desired values and LOS angular rates converge to zero in finite time. Finally, the effectiveness of the designed cooperative guidance law is demonstrated through simulation results.  相似文献   

20.
全球卫星导航系统成熟的产业推广和技术应用极大地牵引了卫星导航发展需求,使相关学者愈来愈关注恶劣电磁环境下的抗干扰技术以及分米、厘米级高精度导航定位服务。低轨星座优越的平台/轨道特性使其被誉为未来极具潜力的卫星导航手段。特别是近十年商业航天的蓬勃发展,带动卫星平台技术及火箭运载技术突飞猛进,大大降低了低轨卫星制造与发射成本,使得面向低轨星座的导航定位技术成为研究热点和发展方向。首先深入地剖析了不同历史阶段低轨导航的应用方向和技术体制,梳理归纳了低轨卫星星座独立定位及低中高轨卫星联合定位两种应用模式的技术特点,然后分析了未来低轨导航在整个卫星导航系统体系中的应用前景和技术挑战,为未来低轨导航系统建设和发展提供设计参考与技术借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号