首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2?sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10?2–106 particles/cm2?s?sr?MeV) and energy spectra (ΔE/E~25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.  相似文献   

2.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   

3.
The approximate theory of ELF propagation in the Earth-ionosphere transmission line described by Booker (1980) is applied to a simplified worldwide model of the D and E regions, and of the Earth's magnetic field. At 1000 Hz by day, reflection is primarily from the gradient on the underside of the D region. At 300 Hz by day, reflection is primarily from the D region at low latitudes, but it is from the E region at high latitudes. Below 100 Hz by day, reflection is primarily from the gradient on the underside of the E region at all latitudes. By night, reflection from the gradient on the topside of the E region is important. There is then a resonant frequency (~ 300 Hz) at which the optical thickness of the E region for the whistler mode is half a wavelength. At the Schumann resonant frequency in the Earth-ionosphere cavity (~ 8 Hz) the nocturnal E region is almost completely transparent for the whistler mode and is semi-transparent for the Alfvén mode. Reflection then takes place from the F region. ELF propagation in the Earth-ionosphere transmission line by night is quite dependent on the magnitude of the drop in ionization density between the E and F regions. Nocturnal propagation at ELF therefore depends significantly on an ionospheric feature whose magnitude and variability are not well understood. A comparison is made with results based on the computer program of the United States Naval Ocean Systems Center.  相似文献   

4.
Cosmic gamma-ray ray sources may be sought if high-energy gamma-rays may be detected without confusion from the very intense isotropic background of hadronic cosmic rays. Ground-based methods are needed at energies above tens of GeV, using air showers, and at energies below tens of TeV, the detection of muons in showers is not the most efficient way to reject hadronic showers. The shape and orientation of erenkov images can reject far more than 99% of the background. The way in which erenkov radiation is distributed in showers is discussed, and the possibilities of using image shape, distribution of light on the ground, time profile, spectrum and polarization of the light are briefly discussed. Imaging alone appears to be the most powerful. Simulations suggest that the uv content of the light should not be a useful diagnostic.  相似文献   

5.
We present models of the extragalactic background light (EBL) based on several scenarios of galaxy formation and evolution. We have treated galaxy formation with the Press-Schecter approximation for both cold dark matter (CDM) and cold+hot dark matter (CHDM) models, representing a moderate (z f 3) and a late (z f 1) era of galaxy formation respectively. Galaxy evolution has been treated by considering a variety of stellar types, different initial mass functions and star formation histories, and with an accounting of dust absorption and emission. We find that the dominant factor influencing the EBL is the epoch of galaxy formation. A recently proposed method for observing the EBL utilizing the absorption of 0.1 to 10 TeV gamma-rays from active galactic nuclei (AGN) is shown to be capable of discriminating between different galaxy formation epochs. The one AGN viewed in TeV light, Mrk 421, does show some evidence for a cutoff above 3 TeV; based on the EBL models presented here, we suggest that this is due to extinction in the source. The large absorption predicted at energies > 200 GeV for sources at z > 0.5 indicates that observations of TeV gamma-ray bursts (GRB) would constrain or eliminate models in which the GRB sources lie at cosmological distances.Now at University of Chicago, Dept. of Astronomy & Astrophysics.  相似文献   

6.
Emission from astronomical jets extend over the entire spectral band: from radio to the TeV γ-rays. This implies that various radiative processes are taking place in different regions along jets. Understanding the origin of the emission is crucial in understanding the physical conditions inside jets, as well as basic physical questions such as jet launching mechanism, particle acceleration and jet composition. In this chapter I discuss various radiative mechanisms, focusing on jets in active galactic nuclei (AGN) and X-ray binaries (XRB) environment. I discuss various models in use in interpreting the data, and the insights they provide.  相似文献   

7.
An approximate theory of ELF propagation in the Earth-ionosphere transmission line is developed by combining the reflection theory of Booker and Lefeuvre (1977) with Greifinger and Greiferinger's (1978, 1979) treatment of the effect of ionization below the level of reflection. The theory allows for the influence of the Earth's magnetic field, for reflection from the gradient on the underside of the D region (or, at night, of a ledge below the E region), for reflection from the gradient on the underside of the E region, and for reflection from the gradient on the topside of the E region. The procedure is to compare local vertical gradient with local wavelength, thereby classifying altitude into intervals where the gradient is high and ones where it is low. Where the gradient is low, the phase-integral treatment is adequate. An interval where the gradient is high may, to a first approximation, be replaced by a discontinuity. The amount of the discontinuity is the difference between the refractive indices at the top and bottom of the interval of high gradient, judged in relation to local wavelength. It is then a matter of combining reflections from the several discontinuities. This requires calculation of the complex phase-changes between the discontinuities. But these are the intervals where the phase-integral treatment is available. To a beter approximation, there is a non-zero phase-change associated with an interval of high gradient. The method for incorporating this is described.  相似文献   

8.
The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA’s STEREO mission, is designed to measure electrons from ~2 to ~100 keV. This is the primary energy range for impulsive electron/3He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to ~2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below ~20 keV. STE provides energy resolution of ΔE/E~10–25% and the angular resolution of ~20° over two oppositely directed ~80°×80° fields of view centered on the nominal Parker spiral field direction.  相似文献   

9.
While atmospheric Cherenkov telescopes have a small field of view and a small duty fraction, arrays of particle detectors on ground have a 1 sr field of view and a 100% duty fraction. On the other hand, particle detector arrays have a much higher energy threshold and an inferior hadron rejection as compared to Cherenkov telescopes. Low threshold particle detector arrays would have potential advantages over Cherenkov telescopes in the search for episodic or unexpected sources of gamma rays in the multi-TeV energy range. Ways to improve the threshold and hadron rejection of arrays are shown, based on existing technology for the timing method (with scintillator or water Cherenkov counters) and the tracking method (with tracking detectors). The performance that could be achieved is shown by examples for both methods. At mountain altitude (about 4000 m or above) an energy threshold close to 1 TeV could be achieved. For any significant reduction of the hadronic background by selecting muon-poor showers a muon detection area of at least 1000 m2 is required, even for a compact array.  相似文献   

10.
The paper discusses the methods for measuring the linear polarization of gamma-rays with energies above 0.1 MeV. Special attention is given to Compton scattering and e , e + pair production. The effects of the selection of gamma-events and multiple scattering in the converters on the derived azimuthal distribution are considered. The changes of measuring polarization with gamma-telescopes in a near future are considered.  相似文献   

11.
Electrons are more susceptible to energy losses in magnetic fields and photon fields than protons. Hence, photons at various wavelengths, including gamma rays, bring more readily information on high-energy electrons than on protons. Neutrinos provide a unique tracer for protons. Furthermore, at high energies the neutrino flux can considerably exceed the gamma-ray flux, as gamma rays above ~1 MeV are degraded by γ-γ interactions in compact high-intensity sources. Active galactic nuclei (AGN) with outputs >1045 ergs s?1 and dimensions ~1014 cm would constitute such sources. If the AGN are powered by ultra-massive black holes, then these numerical conditions are satisfied, and at high energies the flux J v >J γ . Berezinsky and Ginzburg have pointed out that the photon intensity around spinars is not sufficient to cause gamma-ray degradation. These authors have demonstrated that the measurement of neutrino flux, combined with the measurement (or upper limit) of gamma-ray flux would show whether the active galactic nuclei are powered by massive black holes or spinars. We estimate that gamma rays would be degraded at spinars, too, at energies >1 GeV.  相似文献   

12.
The variability of the X-ray spectrum of the discrete source Cyg XR-1 (α = 19h 56m δ = +35°.1) is reviewed. The variations observed in the energy region accessible to balloon borne detectors (energies greater than 20 keV) can be explained by assuming them to be caused by the eclipsing properties of a binary system. It is suggested that the system is composed of a source of small angular extent having a spectrum similar to that of a black body at approximately 1.5 × 108 K (kT= 12.5 keV) and a non X-radiating companion which eclipses it at intervals of 2.9850 days. The system would be surrounded by an X-radiating plasma whose photon flux between 1 and 100 keV can be approximated by a power law spectrum whose exponent is — 1.7.  相似文献   

13.
The fuel sulfur conversion efficiency ε behind the combustor of a JT9D-7A aircraft engine in flight has been simulated using an extended exhaust plume chemistry model. The model simulations start in the high-temperature intra-engine regime behind the combustor. The simulations show that the sulfur conversion efficiency is sensitively dependent on model assumptions like reaction rate constants and initial mixing ratios. Sensitivity studies to demonstrate the effect of the uncertainties and variabilities of these parameters on ε are presented. Among the rate constants k, the uncertainty of the reaction rate constant for SO2 + OH + M → HSO3 + M has the greatest effect on ε: The uncertainty of k(SO2 + OH) results in an uncertainty range of 1.1% <ε<6.2% for our simulation scenario, with a most probable value around 3.8%. The effect of the reaction SO2 + O + M → SO3 + M on ε is very small if the initial mixing ratio of O is smaller than that of OH. Among the initial mixing ratios, the variation of the initial OH mixing ratio OH0 has the greatest effect on ε. For our simulation scenario, the uncertainty range of 5.7 ppmv < OH0 < 14.7 ppmv (inferred from measurements) leads to an uncertainty range of 2.7% <ε<5.0%.  相似文献   

14.
This paper discusses the properties of using the water Cherenkov technique to detect air showers in the few hundred GeV to 100 TeV energy range. The responses of a 6 m2 2 m deep water Cherenkov counter and that of a 6 m2 10cm thick scintillator-lead sandwich counter to air shower electrons and photons is described. The advantages of water Cherenkov detector is outlined. Its application to do VHE gamma ray astronomy is discussed with particular reference to the MILAGRO telescope currently under construction. Milagro, a water-Cherenkov detector to do gamma ray astronomy above 100 Gev, uses an existing pool 60m × 80m by 8m, located in the Jemez mountains near Los Alamos, NM. The threshold of the MILAGRO detector is comparable to atmospheric Cherenkov detectors, however it has several advantages over these optical detectors. MILAGRO can operate 24 hours a day in all weather conditions and it has an open aperture which allows it to view the entire northern sky every day. These capabilities allow for a systematic all-sky survey to be done for the first time at these energies. MILAGRO will measure the Crab spectrum with high significance over a wide energy range, it will detect and measure the spectra from AGN's such as MRK 421 and it will search for short duration bursts from GRBs and possibly evaporating PBHs.  相似文献   

15.
Conclusion A satellite such as Neutral-1 should be instrumented with magnetometers, plasma detectors, and detectors of energetic particles, and flown to an altitude of some 26 R E in a high-inclination orbit. It can thus probe regions of the magnetosphere of particular importance but as yet unexplored. It also is in an orbit that offers the optimum variety of phenomena to be explored, with the additional advantage that the characteristics of each phenomenon can be compared one with the other and the interrelation of these phenomena deduced. Such a satellite offers unique opportunities to investigate a multitude of unknown phenomena, such as the origin and energization of the particles that cause auroras and constitute Van Allen radiation. It can also potentially yield data to help solve long-lived problems, viz.: do the particles that cause auroras come from the sun, and how does a ripple in the solar corona ultimately feed energy into the magnetosphere at an average rate of 1017-1018 ergs/sec? Someone should fly such a satellite at the earliest opportunity and certainly by sunspot maximum (1969) since the existing satellite and instrumental technology is adequate.  相似文献   

16.
Overview of the New Horizons Science Payload   总被引:2,自引:0,他引:2  
The New Horizons mission was launched on 2006 January 19, and the spacecraft is heading for a flyby encounter with the Pluto system in the summer of 2015. The challenges associated with sending a spacecraft to Pluto in less than 10 years and performing an ambitious suite of scientific investigations at such large heliocentric distances (>32 AU) are formidable and required the development of lightweight, low power, and highly sensitive instruments. This paper provides an overview of the New Horizons science payload, which is comprised of seven instruments. Alice provides moderate resolution (~3–10 Å FWHM), spatially resolved ultraviolet (~465–1880 Å) spectroscopy, and includes the ability to perform stellar and solar occultation measurements. The Ralph instrument has two components: the Multicolor Visible Imaging Camera (MVIC), which performs panchromatic (400–975 nm) and color imaging in four spectral bands (Blue, Red, CH4, and NIR) at a moderate spatial resolution of 20 μrad/pixel, and the Linear Etalon Imaging Spectral Array (LEISA), which provides spatially resolved (62 μrad/pixel), near-infrared (1.25–2.5 μm), moderate resolution (λ/δ λ~240–550) spectroscopic mapping capabilities. The Radio Experiment (REX) is a component of the New Horizons telecommunications system that provides both radio (X-band) solar occultation and radiometry capabilities. The Long Range Reconnaissance Imager (LORRI) provides high sensitivity (V<18), high spatial resolution (5 μrad/pixel) panchromatic optical (350–850 nm) imaging capabilities that serve both scientific and optical navigation requirements. The Solar Wind at Pluto (SWAP) instrument measures the density and speed of solar wind particles with a resolution ΔE/E<0.4 for energies between 25 eV and 7.5 keV. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) measures energetic particles (protons and CNO ions) in 12 energy channels spanning 1–1000 keV. Finally, an instrument designed and built by students, the Venetia Burney Student Dust Counter (VB-SDC), uses polarized polyvinylidene fluoride panels to record dust particle impacts during the cruise phases of the mission.  相似文献   

17.
《中国航空学报》2021,34(3):71-81
The aerodynamic performance of compressor airfoil is significantly affected by the surface roughness at low Reynolds number (Re). In the present study, numerical simulations have been conducted to investigate the impact of surface roughness on the profile loss of a high subsonic compressor airfoil at Re = 1.5 × 105. Four roughness locations, covering 10%, 30%, 50% and 100% of the suction surface from the leading edge and seven roughness magnitudes (Ra) ranging from 52 to 525 μm were selected. Results showed that the surface roughness mainly determined the loss generation process by influencing the structure of the Laminar Separation Bubble (LSB) and the turbulence level near the wall. For all the roughness locations, the variation trend for the profile loss with the roughness magnitude was similar. In the transitionally rough region, the negative displacement effect of the LSB was suppressed with the increase of roughness magnitude, leading to a maximum decrease of 14.6%, 16.04%, 16.45% and 10.20% in the profile loss at Ra = 157 μm for the four roughness locations, respectively. However, with a further increase of the roughness magnitude in the fully rough region, the stronger turbulent dissipation enhanced the growth rate of the turbulent boundary layer and increased the profile loss instead. By comparison, the leading edge roughness played a dominant role in the boundary layer development and performance variation. To take fully advantage of the surface roughness reducing profile loss at low Re, the effects of roughness on suppressing LSB and inducing strong turbulent dissipation should be balanced effectively.  相似文献   

18.
In this work, we summarize the development and current status of the Global Muon Detector Network (GMDN). The GMDN started in 1992 with only two muon detectors. It has consisted of four detectors since the Kuwait-city muon hodoscope detector was installed in March 2006. The present network has a total of 60 directional channels with an improved coverage of the sunward Interplanetary Magnetic Field (IMF) orientation, making it possible to continuously monitor cosmic ray precursors of geomagnetic storms. The data analysis methods developed also permit precise calculation of the three dimensional cosmic ray anisotropy on an hourly basis free from the atmospheric temperature effect and analysis of the cosmic ray precursors free from the diurnal anisotropy of the cosmic ray intensity.  相似文献   

19.
We present a general overview of the structure and evolution of massive stars of masses ≥12 M during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C(α,γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号