首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it).  相似文献   

2.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

3.
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter–receiver great circle path (TRGCP) during local noon time 00:36–03:13 UT (09:36–12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h′) in km and inverse scale height parameter (β) in km−1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km−1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.  相似文献   

4.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   

5.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

6.
The evidently low solar activity observed between solar cycles 23 and 24 during the years 2008–2010 led to a substantial increase in the Galactic Cosmic Ray (GCR) intensity in comparison with preceding solar minima. As the GCRs consist of highly-ionizing charged particles having the potential to cause biological damage, they are a subject of concern for manned missions to space. With the enhanced particle fluxes observed between 2008 and 2010, it is reasonable to assume that the radiation exposure from GCR must have also increased to unusually high levels. In this paper, the GCR exposure outside and inside the Earth’s magnetosphere is numerically calculated for time periods starting from 1970 to the end of 2011 in order to investigate the increase in dose levels during the years 2008–2010 in comparison with the last three solar minima. The dose rates were calculated in a water sphere, used as a surrogate for the human body, either unshielded or surrounded by aluminium shielding of 0.3, 10 or 40 g/cm2.  相似文献   

7.
We analyze the multifractal scaling of the modulus of the interplanetary magnetic field near and far upstream of the Earth’s bow shock, measured by Cluster and ACE, respectively, from 1 to 3 February 2002. The maximum order of the structure function is carefully estimated for each time series using two different techniques, to ensure the validity of our high-order statistics. The first technique consists of plotting the integrand of the pth order structure function, and the second technique is a quantitative method which relies on the power-law scaling of the extreme events. We compare the scaling exponents computed from the structure functions of magnetic field differences with the predictions obtained by the She–Lévêque model of intermittency in anisotropic magnetohydrodynamic turbulence. Our results show a good agreement between the model and the observations near and far upstream of the Earth’s bow shock, rendering support for the modelling of universal scaling laws based on the Kolmogorov phenomenology in the presence of sheet-like dissipative structures.  相似文献   

8.
By the data on intensity-time profiles of the neutron capture line of 2.223 MeV we have studied some characteristics of two solar flares, 28 October 2003 and 20 January 2005 (INTEGRAL and CORONAS-F observations, respectively). The SINP code was applied making allowance for the main processes of neutron interactions and deceleration in the solar plasma, character of neutron source, losses of neutrons and density model of the solar atmosphere. Comparison of the computed time profiles of 2.223 MeV line with observed ones for the flare of 28 October 2003 confirms the results obtained earlier for three other flares. Namely, the effect of density enhancement (EDE) in the sub-flare region, as well as the variations (hardening) of accelerated particle spectrum in the course of the event have been confirmed. The usual modeling procedure by the SINP code, however, seems to be inapplicable to the event of 20 January 2005. Possible causes of density enhancements during some flares and peculiarities of the 20 January 2005 flare are discussed.  相似文献   

9.
For the magnetospheric storm of May 14–16, 1997 geophysical data of satellites DMSP and IMP-8 are compared with data of radio propagation on the high-latitude HF radio path of Heiss Island – St. Petersburg and data from European ionosondes. Peculiarities of variations of the operational frequencies range MOF–LOF (maximum and lowest observed frequencies) on the path were considered. The range has been determined by the method of oblique ionospheric sounding (OIS). The latter is more informative for observations during a magnetic storm compared to the vertical sounding method. Nevertheless, an analysis of variations of the critical frequency of the ionospheric F2 layer from the chain of European ionosondes was carried out. For interpretation of results, data of magnetospheric parameters, AE-indexes and riometer data were used. The variations of both frequency range on the path and critical frequencies of the F2 layer through the ionosondes chain during the disturbed period had certain regularities of behaviour. These regularities are being explained from the physical point of view. The analysis of the satellite DMSP data has showed that a magnetospheric disturbance causes displacement equatorward of precipitation and some growth of its width and energy.  相似文献   

10.
Relativistic neutrons were observed by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in association with an X17.0 flare on 2005 September 7. The neutron signal continued for more than 20 min with high statistical significance. Intense emissions of γ-rays were also registered by INTEGRAL, and during the decay phase by RHESSI. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. [Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Suppl. Ser. 140, 563–579, 2002], and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch-angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the γ-ray line emission and that ions were continuously accelerated at the emission site.  相似文献   

11.
In the present paper, plasma probe data taken from DEMETER and DMSP-F15 satellites were used to study the ion density and temperature disturbances in the morning topside ionosphere, caused by seismic activity at low latitudes. French DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) micro-satellite mission had been especially designed to provide global scale observations in the topside ionosphere over seismically active regions. Onboard the DEMETER satellite, the thermal plasma instrument called “Instrument Analyser de Plasma” (IAP) provides ion mass and densities, ion temperature, three component ion drift and ion density irregularities measurements. As a part of “Defense Meteorological Satellite Program”, DMSP-F15 satellite is on orbit operation since 1999. It provides ionospheric plasma diagnostics by means of the “Special Sensor-Ion, Electron and Scintillations” (SSIES-2) instrument. We examined few examples of possible seismic effects in the equatorial ionosphere, probably associated with seismic activity during December month in the area of Sumatra Island, including main shock of giant Sumatra event. It is found that the localized topside ionospheric disturbances appear close to the epicenters of certain earthquakes in the Sumatra region. In two cases, ion H+/O+ ratio rises more than one hour before the main shock, due to the O+ density decrease at the winter side of the geomagnetic equator, with longitudinally closest location to the epicenter of the earthquakes. These anomalous depletions in O+ density do exist in all cases of SSIES-2 data. Particularly for Sumatra main event, more than one hour after the main shock, we observe large-scale depletion in O+ density northward of the geomagnetic equator at winter side hemisphere. Associated with O+ depletion, ion temperature latitudinal profile around the geomagnetic equator shows enhanced asymmetry with minimum at the summer side and maximum in positive Ti deviation from mean value at the winter side. This disturbance lasted for more than three hours, later in time observed at the same place by IAP/DEMETER.  相似文献   

12.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

13.
Ozone density profiles between 35 and 65 km altitude are derived from scattered sunlight limb radiance spectra measured by the SCIAMACHY instrument on the Envisat satellite. The method is based on the inversion of normalized limb radiance profiles in the Hartley absorption bands of ozone at selected wavelengths between 250 and 310 nm. It employs a non-linear Newtonian iteration version of Optimal Estimation (OE) coupled with the radiative transfer model SCIARAYS. The limb scatter technique combined with a classical OE retrieval in the short-wave UV-B and long-wave UV-C delivers reliable results as shown by a first comparison with MIPAS V4.61 profiles yielding agreement within 10% between 38 and 55 km. An overview of the methodology and an initial error analysis are presented. Furthermore the effect of the solar proton storm between 28 October and 6 November 2003 on the ozone concentration profiles is shown. They indicate large depletion of ozone of about 60% at 50 km in the Northern hemisphere, a weaker depletion in the Southern hemisphere and a dependence of the depletion on the Earth’s magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号