首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
利用COSMIC掩星数据监测电离层的异常变化   总被引:1,自引:0,他引:1  
分析了COSMIC掩星数据反演电子密度的方法,利用实例研究反演方法的特点,并采用ISR非相干散射雷达获取的电子密度数据进行验证,进而反演了长三角区域SHAO(IGS)站上空在日全食和太阳风暴期间的电子密度廓线图. 通过与平静日期间电离层电子密度进行比较,发现日全食及太阳风暴导致电离层发生的异常变化,从而提出COSMIC掩星数据反演电子密度在监测电离层变化时所具有的优势.   相似文献   

2.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

3.
The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy.  相似文献   

4.
With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde measurements.  相似文献   

5.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

6.
A radio holographic approach, developed by Pavelyev (1998), Hocke (1999), Igarashi (2000), is applied to observation of wave phenomena in the upper atmosphere using Global Positioning System — “Microlab-1” satellite (GPS/MET) radio occultation data. In the current state the radio holography approach uses the radar focused synthetic aperture principle to obtain high spatial resolution, and to remove the interference part corresponding to scattering from the upper ionosphere. High spatial resolution and accuracy of the radio halographic method is validated by means of revealing the weak signal reflected from the sea in the GPS/MET radio occultation data. The radio holographic method gives a new possibility to measure directly the vertical gradient of the electron density altitude profile in the D-layer using the radio occultation signal. The results of the application of radio holographic analysis to two GPS/MET occultation events (07 February 1997, No. 0447, 0158), in the D-region of the ionosphere, are discussed. Wave structures in the electron density concentration with a vertical spatial period of 1.4–6 km, and variations in the electron density gradient from ±5·109 to ±8·109 [1/(m3km)], have been retrieved from the D-layer data. The features observed in the vertical electron density profiles may be connected with breaking of gravity waves in the D-layer of the ionosphere.  相似文献   

7.
The plasmaspheric electron content (PEC) was estimated by comparison of GPS TEC observations and FORMOSAT-3/COSMIC radio occultation measurements at the extended solar minimum of cycle 23/24. Results are retrieved for different seasons (equinoxes and solstices) of the year 2009. COSMIC-derived electron density profiles were integrated up to the height of 700 km in order to retrieve estimates of ionospheric electron content (IEC). Global maps of monthly median values of COSMIC IEC were constructed by use of spherical harmonics expansion. The comparison between two independent measurements was performed by analysis of the global distribution of electron content estimates, as well as by selection specific points corresponded to mid-latitudes of Northern America, Europe, Asia and the Southern Hemisphere. The analysis found that both kinds of observations show rather similar diurnal behavior during all seasons, certainly with GPS TEC estimates larger than corresponded COSMIC IEC values. It was shown that during daytime both GPS TEC and COSMIC IEC values were generally lower at winter than in summer solstice practically over all specific points. The estimates of PEC (h > 700 km) were obtained as a difference between GPS TEC and COSMIC IEC values. Results of comparative study revealed that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50–60%) during night-time and lesser values (25–45%) during day-time.  相似文献   

8.
Comparative analysis of GPS TEC data and FORMOSAT-3/COSMIC radio occultation measurements was carried out for Japan region during period of the extremely prolonged solar minimum of cycle 23/24. COSMIC data for different seasons corresponded to equinox and solstices of the years 2007–2009 were analyzed. All selected electron density profiles were integrated up to the height of 700 km (altitude of COSMIC satellites), the monthly median estimates of Ionospheric Electron Content (IEC) were retrieved with use of spherical harmonics expansion. Monthly medians of TEC values were calculated from diurnal variations of GPS TEC estimates during considered month. Joint analysis of GPS TEC and COSMIC data allows us to extract and estimate electron content corresponded to the ionosphere (its bottom and topside parts) and the plasmasphere (h > 700 km) for different seasons of 2007–2009. Percentage contribution of ECpl to GPS TEC indicates the clear dependence from the time and varies from a minimum of about 25–50% during day-time to the value of 50–75% at night-time. Contribution of both bottom-side and topside IEC has minimal values during winter season in compare with summer season (for both day- and night-time). On average bottom-side IEC contributes about 5–10% of GPS TEC during night and about 20–27% during day-time. Topside IEC contributes about 15–20% of GPS TEC during night and about 35–40% during day-time. The obtained results were compared with TEC, IEC and ECpl estimates retrieved by Standard Plasmasphere–Ionosphere Model that has the plasmasphere extension up to 20,000 km (GPS orbit).  相似文献   

9.
从等离子体运动方程出发, 利用COSMIC星座的掩星数据, 借助相关经验模式, 计算了太阳活动低年顶部电离层O+场向扩散速度和扩散通量, 并分析了其全球分布和日变化特征. 结果表明, 白天等离子体扩散速度的方向随高度增加由向下(极向)逐步变为向上(赤道向), 方向转变的高度一般在hmF2+80 km以下. 在白天较高高度, 南北磁纬10o ~20 o存在着向上方向的最大扩散速度和扩散通量; 而在夜间, 南北磁纬30o~40 o存在向下方向的最大扩散速度和扩散通量. 在分点, 南北半球的扩散通量和扩散速度大致对称; 而在至点, 扩散通量存在着明显的南北半球不对称现象. 另外, 不同纬度的扩散速度有着不同的日变化特征.   相似文献   

10.
The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.  相似文献   

11.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100–200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases during the initial period of the COSMIC mission.  相似文献   

12.
The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.  相似文献   

13.
在中国火星探测萤火一号(YH-1)计划中, 包括了地基掩星观测反演火星大气的科研任务. 观测资料整理是反演流程的第一步. 本文描述了地基火星大气掩星观测处理软件系统的观测数据流程和观测资料整理模块,并详细介绍了观测资料整理模块的结构和功能, 其中包括时间系统转换、历表插值、坐标系变换、信号时延改正以及掩星平面建立. 利用行星数据系统公布的火星快车无线电科学数据和由SPICE得到的地球、火星历表以及火星快车的轨道数据, 结合本文的算法, 得到了一些实验结果.   相似文献   

14.
电离层不规则体对卫星导航、通信、雷达系统等有重要影响.通过数值模拟及与实测数据的对比,论证基于小波分解与重构方法实现利用掩星数据反演电离层不规则体的可行性.以电离层偶发E层为例,利用国际参考电离层(IRI)模拟背景电离层电子密度分布,利用掩星探测的水平电子密度总含量δht反演不规则体信息,并与模拟数据进行比较.对200...  相似文献   

15.
Since 1995, with the first GPS occultation mission on board Low Earth Orbiter (LEO) GPS/MET, inversion techniques were being applied to GPS occultation data to retrieve accurate worldwide distributed refractivity profiles, i.e. electron density profiles in the case of Ionosphere. Important points to guarantee the accuracy is to take into account horizontal gradients and topside electron content above the LEO orbit. This allows improving the accuracy from 20% to 50%, depending on the conditions, latitude and epoch regarding to Solar cycle as reported in previous works.  相似文献   

16.
We examine the systematic differences between topside electron density measurements recorded by different techniques over the low-middle latitude operating European station in Nicosia, Cyprus (geographical coordinates: 35.14oN, 33.2oE), (magnetic coordinates 31.86oN, 111.83 oE). These techniques include space-based in-situ data by Langmuir probes on board.European Space Agency (ESA) Swarm satellites, radio occultation measurements on board low Earth orbit (LEO) satellites from the COSMIC/FORMOSAT-3 mission and ground-based extrapolated topside electron density profiles from manually scaled ionograms. The measurements are also compared with International Reference Ionosphere Model (IRI-2016) topside estimations and IRI-corrected NeQuick topside formulation (method proposed by Pezzopane and Pignalberi (2019)). The comparison of Swarm and COSMIC observations with digisonde and IRI estimations verifies that in the majority of cases digisonde underestimates while IRI overestimates Swarm observations but in general, IRI provides a better topside representation than the digisonde. For COSMIC and digisonde profiles matched at the F layer peak the digisonde systematically underestimates topside COSMIC electron density values and the relative difference between COSMIC and digisonde increases with altitude (above hmF2), while IRI overestimates the topside COSMIC electron density but after a certain altitude (~150 km above hmF2) this overestimation starts to decrease with altitude. The IRI-corrected NeQuick underestimates the majority of topside COSMIC electron density profiles and relative difference is lower up to approximately 100 km (above the hmF2) and then it increases. The overall performance of IRI-corrected NeQuick improves with respect to IRI and digisonde.  相似文献   

17.
The ionospheric Nighttime Winter Anomaly (NWA) is a feature observed in the Northern Hemisphere at the American and in the Southern Hemisphere at the Asian longitude sector under low solar activity conditions. Jakowski et al. (2015) analyzed ground-based GPS derived TEC and peak electron density data from radio occultation measurements on Formosat-3/COSMIC satellites and confirmed the persistence of the phenomenon. Further, they assumed that Mid-latitude Summer Nighttime Anomaly (MSNA) and related special anomalies such as the Weddell Sea Anomaly (WSA) and the Okhotsk Sea Anomaly (OSA) are closely related to the NWA via enhanced wind-induced uplifting of the ionosphere. The aim of this paper is to study the factors causing these anomalies and also to investigate if these anomalies are re-produced by IRI. The results show that IRI model does include the NWA effect, though at a different longitude and could be improved for better predictions. The IRI-2016 model does show WSA in TEC but not in NmF2. Further, the IRI-2016 model could clearly predict the OSA both in NmF2 and TEC.  相似文献   

18.
In order to investigate the regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities derived from about five years of Global Positioning System radio occultation observations by FORMOSAT-3/COSMIC satellites. The analysis is done for different latitudes and altitudes in the region of Iran. The least-squares harmonic estimation is found to be a powerful tool for the frequency analysis of the completely unevenly spaced time series of radio occultation measurements. Although the obtained results are slightly different from the exact expected cycles (i.e. annual and diurnal components with their Fourier decompositions, and the 27-day period) due to the low horizontal resolution of radio occultation measurements, high vertical resolution of the observations enables us to detect not only the total electron content variations but also periodic patterns of electron densities at different altitudes of the ionosphere. The dominant diurnal and annual signals together with their Fourier series decompositions are obtained, which are consistent with the previous analyses on the total electron content. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, indicating the relationship between the semiannual variation of the electron densities and the ionospheric equatorial anomaly. From detection of the phases of the components, it is revealed that the annual signal generally has its maximum value in summers at high altitudes, and in the winters at low altitudes. This is probably due to the higher [O/N2] ratios in winter than in the summer in the lower ionosphere. Furthermore, the semiannual component mostly peaks around solstices or about a month before/after them.  相似文献   

19.
Multi-channel Global Positioning System (GPS) carrier phase signals, received by the six low Earth orbiting (LEO) satellites from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) program, were used to undertake active limb sounding of the Earth’s atmosphere and ionosphere via radio occultation. In the ionospheric radio occultation (IRO) data processing, the standard Shell inversion technique (SIT), transformed from the traditional Abel inversion technique (AIT), is widely used, and can retrieve good electron density profiles. In this paper, an alternative SIT method is proposed. The comparison between different inversion techniques will be discussed, taking advantage of the availability of COSMIC datasets. Moreover, the occultation results obtained from the SIT and alternative SIT at 500 km and 800 km, are compared with ionosonde measurements. The electron densities from the alternative SIT show excellent consistency to those from the SIT, with strong correlations over 0.996 and 0.999 at altitudes of 500 km and 800 km, respectively, and the peak electron densities (NmF2) from the alternative SIT are equivalent to the SIT, with 0.839 vs. 0.844, and 0.907 vs. 0.909 correlation coefficients when comparing to those by the ionosondes. These results show that: (1) the NmF2 and hmF2 retrieved from the SIT and alternative SIT are highly consistent, and in a good agreement with those measured by ionosondes, (2) no matter which inversion technique is used, the occultation results at the higher orbits (∼800 km) are better than those at the lower orbits (∼500 km).  相似文献   

20.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号