首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nighttime vertical E × B drifts velocities of the F2-region were inferred from the hourly hmF2 values obtained from ionosonde data over an African equatorial station, Ilorin (8.50oN, 4.68oE; dip lat. 2.95o) during period of low solar activity. For each season, the plasma drift Vz is characterized by an evening upward enhancement, then by a downward reversal at 1900 LT till around 0000 LT, except for June solstice. This was explained using the Rayleigh–Taylor (R-T) instability mechanism. The occasional drift differences in Vz obtained by inferred and direct measurement over Ilorin and Jicamarca, respectively are reflective of the importance of chemistry and divergent transport system due to both the E region electric and magnetic fields instead of simple motions. The pre-reversal enhancement (PRE) magnitude is higher during the equinoctial months than the solsticial months over Jicamarca, highest during December solstice and the equinoctial months over Ilorin, suggesting the dominance of higher E × B fountain during equinoxes at both stations. The lowest PRE magnitude was in June solstice. The appearance of post-noon peak in NmF2 around 1700 LT is highest during the equinoctial months and lowest during the solsticial period. A general sharp drop in NmF2 around 1800 LT is distinct immediately after sunset, lowest during June solstice and highest in March equinox. Our result suggests that between 0930 and 2100 LT, the general theory that vertical drifts obtained by digisonde measurements only match the E × B drift if the F layer is higher than 300 km is reliable, but does not hold for the nighttime period of 2200–0600 LT under condition of solar minima. Hence, the condition may not be sufficient for the representation of vertical plasma drift at nighttime during solar minima. This assertion may still be tentative, as more equatorial stations needed to be studied for better confirmation.  相似文献   

2.
F-region vertical plasma drift velocities were deduced from the hourly hmF2 values acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4°N, 358.5°E, dip angle 5.9°N) in Africa. Our results are compared against the global empirical model of Scherliess and Fejer (1999) incorporated in the IRI model (IRI-2007) for 1600 to 0800 LT from 1 year of data during sunspot maximum year of 1989 (yearly average solar flux intensity, F10.7 = 192) corresponding to the peak phase of solar cycle 22, under magnetically quiet conditions. The drifts are entirely downward between 2000 and 0500 LT bin for both techniques and the root mean square error (RMSE) between the modeled and the ionosonde vertical plasma drifts during these periods is 3.80, 4.37, and 4.74 m/s for June solstice, December solstice and equinox, respectively. Ouagadougou average vertical drifts show evening prereversal enhancement (PRE) velocity peaks (VZP) of about 16, 14, and 17 m/s in June solstice, December solstice, and equinox, respectively, at 1900–2000 LT; whereas global empirical model average drifts indicate VZP of approximately 33 m/s (June solstice), 29 m/s (December solstice), and 50 m/s (equinox) at 1800 LT. We find very weak and positive correlation (+0.10376) between modeled VZP versus F10.7, while ionosonde VZP against F10.7 gives worst and opposite correlation (−0.05799). The results also show that modeled VZPAp indicates good and positive correlation (+0.64289), but ionosonde VZPAp exhibits poor and negative correlation (−0.22477).  相似文献   

3.
In this paper, the F2-layer critical frequency (foF2) and peak height (hmF2) measured by the FM/CW ionosonde at Thailand equatorial latitude station, namely Chumphon (10.72°N, 99.37°E, dip 3.22) are presented. The measurement data during low solar activity from January 2004 to December 2006 are analyzed based on the diurnal, seasonal variation. The results are then compared with IRI-2001 model predictions. Our study shows that: (1) In general, both the URSI and CCIR options of the IRI model give foF2 close to the measured ones, but the CCIR option produces a smaller range of deviation than the URSI option. The agreement during daytime is generally better than during nighttime. Overestimation mostly occurs in 2004 and 2006, while underestimation is during pre-sunrise hours in June solstice in 2005. The peak foF2 around sunset is higher during March equinox and September equinox than the other seasons, with longer duration of maximum levels in March equinox than September equinox. Large coefficients of variability foF2 occur during pre-sunrise hours. Meanwhile, the best agreement between the observed foF2 and the IRI model is obtained in June solstice. (2) In general, The IRI (CCIR) model predicts the observed hmF2 well during daytime in June solstice from 2004–2006, but it overestimates during March equinox, September equinox and December solstice. For nighttime, the model overestimates hmF2 values for all seasons especially during March equinox and September equinox. However, the model underestimates hmF2 values during September equinox and for some cases during June solstice and December solstice at pre-sunrise. The agreement between the IRI model and the hmF2(M3000OBS) is worst around noontime, post-sunset and pre-sunrise hours. All comparative studies give feedback for new improvements of CCIR and URSI IRI models.  相似文献   

4.
In this study, 30 storm sudden commencement (SSC) events during the period 2001–2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20–30 m/s and 63% of the events have ΔH peak in the range 80–100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00–12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis were verified using the JULIA radar observed E × B drift velocity for 3 selected events. Root Mean Square (RMS) error analysis carried out for each case suggest that polynomial regression (order 3) analysis provides a better agreement with the observations from among the linear, polynomial (order 2 and 3) analysis.  相似文献   

5.
The Ionospheric F2-layer peak parameters response to a magnetic storm had been investigated over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°), Jicamarca, Peru (11.95°S, 76.87°W, dip angle, 0.8°) and Hermanus, South Africa (34.42°S, 19.22°E, dip angle, −60.77°), using percentage enhancement/depletion values. Our results showed an enhancement in NmF2 at all of these stations. Averagely, pre-noon and post-noon peaks are highest at Ilorin during quiet time. The similar pattern observed for quiet condition between Ilorin and Jicamarca was due to their latitudinal positions. For disturbed NmF2 condition, Jicamarca and Ilorin recorded higher peaks at nighttime than during the daytime for the storms main phase, and the reverse over Hermanus. The nighttime and daytime increases were observed respectively at Ilorin and Hermanus during the recovery period. The hmF2 variation recorded higher enhancement at Jicamarca during the daytime and at Hermanus at nighttime during the main phase. During the recovery phase, the highest enhancement was recorded during the daytime at Jicamarca, and over Hermanus at nighttime. These observations find their explanation in the magnetospheric current, solar wind and E × B drift.  相似文献   

6.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

7.
8.
This paper presents the observed ionospheric F-region critical frequency, foF2, and peak height, hmF2, at northern crest of equatorial ionization anomaly (EIA) area station, namely Chung-Li (24.9°N, 121.1°E, dip 35°), and to be compared with International Reference Ionosphere model (IRI-2001) predictions for the period from 1994 to 1999, corresponding to half of the 23rd solar cycle. The diurnal and seasonal variation of foF2 and hmF2 are analyzed for different solar phases, respectively. The result shows the largest discrepancies were observed during nighttime for foF2 and hmF2, respectively. The value of foF2 both CCIR and URSI selected in the IRI model produced a good agreement during the daytime and underestimated during the noon time for high solar activities. The underestimation at noon time is mainly caused by the fountain effect from equator. Further, the peak height hmF2 shows a larger variability around the midnight than daytime in the equinox and winter seasons and reserved in summer, respectively. The study shows that the monthly median values of observed hmF2 is somewhat lower than those predicated by the IRI model, at night time in all the seasons except the period of 04:00–06:00 LT and reverse at daytime in summer. In general the IRI model predictions with respect to the observed in hmF2 is much better than foF2. The percentage deviation of the observed foF2 (hmF2) values with respect to the IRI model varies from 5% to 80% (0–25%) during nighttime and 2–17% (0–20%) at daytime, respectively. In general, the model generates good results, although some improvements are still necessary to implement in order to obtain better simulations for ionospheric low-latitudes region.  相似文献   

9.
The magnetic storm of 9 March 2012 is a single step intense storm (Dst = −143 nT) whose main phase begins around 0100 UT and lasted for almost 11 h. The increases in NmF2 recorded 33% and 67% incidence respectively during the main and the recovery phase of the storm at the stations considered. The increase in hmF2 occurred concurrently with the increase in thickness parameter B0 between 0000 and 1100 UT, and a simultaneous decrease in the shape parameter B1 for the entire mid-latitude stations. Generally, B1 responded to the storm with a decrease away from the quiet day average, and decreased simultaneously with the increase in NmF2. B0 displays higher variability magnitude during daytime than the nighttime period. The occasional differences in the response of the ionospheric parameters to the storm event are attributed to longitudinal differences. Variation in hmF2 and NmF2 is projected to change in B1, but the rationale behind this effect on B1 is still not known and therefore left open. The two IRI options over-estimate the observed values with that of URSI higher than CCIR. The over-estimation was higher during the nighttime than the daytime for NmF2 response for the mid-latitude stations and the reverse for the equatorial station. A fairer fit of the model with the observed for all parameters over Jicamarca suggests that equatorial regions are better represented on the model. Extensive study of B1 and B0 is recommended to arrive at a better performance of IRI.  相似文献   

10.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

11.
This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: −61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: −64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: −65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00–23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03–06h00 UT, 07–11h00 UT, sunrise 16–18h00 UT and 22–23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods.  相似文献   

12.
The performance of the International Reference Ionosphere (IRI) in predicting the height of the maximum of electron density (hmF2) has been evaluated for similar geomagnetic latitudes stations in the northern hemisphere (NH) and southern hemisphere (SH), and for the last two minima. As truth-sites, the digisonde stations of Millstone Hill (42.6°N, 288.5°E), USA, and Grahamstown (33.3°S, 26.5°E), South Africa, were considered. A monthly averaged diurnal variation was obtained from all the observations and model output in the months studied, and the corresponding difference was also calculated. For this initial study data from summer and winter in the NH and SH were selected for the solstice comparison, and October data for both stations were used to represent equinox conditions. The choice of these periods depended on data availability and quality. The results show that for the earlier minimum in 1996, in general IRI hmF2 values are in reasonable agreement with the observations. The exceptions are October and December in the SH, where IRI hmF2 tends to high, particularly on the dayside, and also July for which the daytime measured values tend to be larger than the IRI ones. For the recent minimum in 2008, IRI tends to over-estimate the hmF2 in most of the observations. The results support the general assertion that thermospheric temperatures were cooler during the last solar minimum as a consequence of an unusually low, and extended, minimum in solar extreme-ultraviolet flux, and in response to continually increasing long-term trend in anthropogenic carbon dioxide. The cooler temperatures not only decrease density at a fixed height, but also make the corresponding contraction of the atmosphere lower the height of the F-region peak.  相似文献   

13.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   

14.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

15.
In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip −24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March–April than in September–October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30–160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east–west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives the eastward electric fields.  相似文献   

16.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

17.
We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination −13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. −1.8°; mag. declination −15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. −11.1°; mag. declination −14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated.  相似文献   

18.
Precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes (M > 6.5) are extensively investigated toward the earthquake prediction. Upward tornado type seismic clouds occurred near the epicenter associated with strong LF-VLF radio noises from lightning discharges in the evening of January 9, 1995 [Yamada, T., Oike, K. On the increase of electromagnetic noises before and after the 1995 Hyogo-Ken Nanbu earthquake. In: Hayakawa M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. TERRAPUB, Tokyo, pp. 417–427, 1999] and anomalous foEs increases up to 10 MHz were detected at Shigaraki, 90 km of the epicenter and at Kokubunji, 500 km east of the epicenter [Ondoh, T. Anomalous sporadic-E layers observed before M7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model. Adv. Polar Upper Atmos. Res. 17, 96–108, 2003; Ondoh, T. Anomalous sporadic-E ionization before a great earthquake, Adv. Space Research 34, 1830–1835, 2004] associated with strong ELF noises from lightning discharges in the daytime on January 15, 1995 [Hata, M., Fujii, T., Takumi, I. EM precursor of large-scale earthquakes in Japan, in: Abstracts of International Workshop on Seismo Electromagnetics (IWSE 2005), Univ. Electro-Communications, Chofu, Tokyo, Japan, March 15–17, pp. 182–186, 2005] before the M7.2 Hyogoken–Nanbu earthquake of January 17, 1995. The anomalous foEs increases occurred at epicentral distances within 500 km that are the same as those of the terrestrial gas emanations along active faults before large earthquakes [King, C.-Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys. Res. 91(B12), 12269–12281, 1986]. The anomalous foEs increases seem to be a seismic precursor because geomagnetic and solar conditions were very quiet all day on January 15,1995 and the normal foEs in Japanese winter is below 6 MHz. No significant pre-seismic geomagnetic field variation was detected at epicentral distance of 100 km before this earthquake [Ondoh, T., Hayakawa, M. Anomalous occurrence of sporadic-E layers before the Hyogoken–Nanbu earthquake, M7.2 of January 17, 1995. In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, pp. 629–639, 1999; Ondoh, T., Hayakawa, M. Seismo discharge model of anomalous sporadic E ionization before great earthquakes. In: Hayakawa, M., O.A. Molchanov, (Eds.), Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Couplings, TERRAPUB, Tokyo, pp. 385–390, 2002; Ondoh. T., Hayakawa, M. Synthetic study of precursory phenomena of the M7.2 Hyogo-ken Nanbu earthquake. Phys. Chem. Earth 31, 378–388, 2006]. The foF2 decrease and h’F increase occurred before the M7.8 Hokkaido Nansei-Oki earthquake of July 12,1993 in a geomagnetic quiet period [Ondoh, T. Ionospheric disturbances associated with great earthquake of Hokkaido southwest coast, Japan of July 12, 1993. Phys. Earth Planet. Interiors. 105, 261–269, 1998; Ondoh, T. Seismo ionospheric phenomena. Adv. Space Res. 26, 8, 1267–1272, 2000]. Characteristic phase changes at terminator times of Omega 10.2 kHz waves passing 70 km of the epicenter extended toward darker local times by 1 h for 3 days before this earthquake due to lowering of the wave reflection height or ion density increases in the D region [Hayakawa, M., Molchanov, O. A., Ondoh, T., Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. La., 43, 00. 169–180, 1996]. The radon concentration in the atmosphere over Ashiya fault, Kobe [Yasuoka, Y., Shinogi, M. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 72(5), 759–761, 1997] and in the groundwater at 17 m well in Nishinomiya, Japan [Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaki, S., Sasaki, Y., Takahashi, M., Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61, 1995] had gradually increased since 2 months before the M7.2 earthquake, increased suddenly in December 1994, and rapidly returned to the normal low level of October, 1994 [Yasuoka, Y., Shinogi, M. 1997. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe. Japan, earthquake. Health Phys. 72(5), 759–761.]. Radon concentration changes in the groundwater before the M 7.0 Izu-Oshima-kinkai earthquake, Japan on January 14, 1978 [Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., Asada, T. 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, 882–883] and the M6.8 Chengkung earthquake, Taiwan on December 10, 2003 [Kuo, T., Fan, K., Chen, W., Kuochen, H., Han, Y., Wang, C., Chang, T., Lee, Y. Radon anomaly at the Antung Hot Spring before the Taiwan M6.8 Chengkung earthquake. Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30–February 1, 2006, SGP-TR-179, 2006] are also investigated to find common features of the groundwater radon concentration changes before large earthquakes (M > 6.5) in comparison with those before the M7.2 Hyogoken–Nanbu earthquake. Groundwater radon concentrations before the 3 large earthquakes had shown common characteristic changes of gradually initial ones from the normal level since about 2 months before the earthquake onsets, rapid decreases down to the minimum, and quick increases up to the maximum at 7–20 days before the earthquake onsets, respectively. These are very useful characteristics of pre-seismic radon anomaly for the earthquake prediction or warning. Promising observations toward the earthquake prediction are also discussed.  相似文献   

19.
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities.  相似文献   

20.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号