首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crater detection via genetic search methods to reduce image features   总被引:1,自引:0,他引:1  
Recent approaches to crater detection have been inspired by face detection’s use of gray-scale texture features. Using gray-scale texture features for supervised machine learning crater detection algorithms provides better classification of craters in planetary images than previous methods. When using Haar features it is typical to generate thousands of numerical values from each candidate crater image. This magnitude of image features to extract and consider can spell disaster when the application is an entire planetary surface. One solution is to reduce the number of features extracted and considered in order to increase accuracy as well as speed. Feature subset selection provides the operational classifiers with a concise and denoised set of features by reducing irrelevant and redundant features. Feature subset selection is known to be NP-hard. To provide an efficient suboptimal solution, four genetic algorithms are proposed to use greedy selection, weighted random selection, and simulated annealing to distinguish discriminate features from indiscriminate features. Inspired by analysis regarding the relationship between subset size and accuracy, a squeezing algorithm is presented to shrink the genetic algorithm’s chromosome cardinality during the genetic iterations. A significant increase in the classification performance of a Bayesian classifier in crater detection using image texture features is observed.  相似文献   

2.
In a large majority of lunar and planetary surface images, impact craters are the most abundant geological features. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this work we are proposing an Integrated CDA, consisting of: (1) utilization of DEM (digital elevation map)-based CDA; (2) utilization of an optical-based CDA; (3) re-projection of used datasets and crater coordinates from normal to rotated view and back; (4) correction of the brightness and contrast of a used optical image; and (5) tile generation for the optical-based CDA and an assembling of results with an elimination of multiple detections, in combination with a pyramid approach down to the resolution of the available DEM image; and (6) a final integration of the results of DEM-based and optical-based CDAs, including a removal of duplicates. The proposed CDA is applied to one specific asteroid-like body, the small Martian moon Phobos. The experimental evaluation of the proposed CDA is done by a manual verification of crater-candidates and a search for uncatalogued craters. The evaluation has shown that the proposed CDA was used successfully for cataloging Phobos craters. The major result of this paper is the PH9224GT – currently the most complete global catalogue of the 9224 Phobos craters. The possible applications of the new catalogue are: (1) age estimations for any selected location; and (2) comparison/evaluation of the different chronology and production functions for Phobos. This confirms the practical applicability of the new Integrated CDA – an additional result of this paper, which can be used in order to considerably extend the current crater catalogues.  相似文献   

3.
Impact craters are ubiquitous and well-studied structures of high geological relevance on the surfaces of the Earth’s Moon, the terrestrial planets, the asteroids and the satellites of the outer planets. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this paper we are proposing a Hybrid CDA: a modified DEM (digital elevation map) reconstruction method used as a step in an existing CDA based on Hough transform. The new Hybrid CDA consists of: (1) reconstruction of topography from optical images using a shape from shading approach; (2) utilization of the DEM-based CDA; (3) correction of brightness and contrast of optical images used in order to be more suitable for evaluation of detections. An additional result of this work is a new method for evaluation of topography reconstruction algorithms, using a DEM-based CDA and an earlier approach for evaluation of CDAs. The new Hybrid CDA was tested using two Chandrayaan-1 Moon Mineralogy Mapper (M3) images and two excerpts of the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) global optical image mosaic. As a result, the number of craters inside these four regions increased considerably from 1754 (as available in the previous LU60645GT catalogue) to 19 396 craters (as available in the resulting new LU78287GT catalogue). This confirmed the practical applicability of the new Hybrid CDA, which can be used in order to considerably extend current crater catalogues.  相似文献   

4.
This paper provides an approach of crater detection and matching to visual navigation in planetary landing missions. The approach aims to detect craters on the planetary surface and match them to a landmark database during the descent phase of a planetary landing mission. Firstly an image region pairing method is proposed to detect the crater by using an image region feature detector. Then a WTA-rule is adopted to match the detected crater to the crater in database. To further reduce the false matching rate, an efficient method for reducing false matches using parameters of crater in 3-D database is proposed. Real images of planetary terrain and a semi-physical planetary landing simulation platform are utilized to test the performance of the approach, simulation results show the proposed approach is able to match the required number of craters to the database for pin-point planetary landing with a low rate of false detection and false matching, which will lead to an improved planetary landing precision.  相似文献   

5.
Crater Detection Algorithms (CDAs) applications range from estimation of lunar/planetary surface age to autonomous landing on planets and asteroids and advanced statistical analyses. A large amount of work on CDAs has already been published. However, problems arise when evaluation results of some new CDA have to be compared with already published evaluation results. The problem is that different authors use different test-fields, different Ground-Truth (GT) catalogues, and even different methodologies for evaluation of their CDAs. Re-implementation of already published CDAs or its evaluation environment is a time-consuming and unpractical solution to this problem. In addition, implementation details are often insufficiently described in publications. As a result, there is a need in research community to develop a framework for objective evaluation of CDAs. A scientific question is how CDAs should be evaluated so that the results are easily and reliably comparable. In attempt to solve this issue we first analyzed previously published work on CDAs. In this paper, we propose a framework for solution of the problem of objective CDA evaluation. The framework includes: (1) a definition of the measure for differences between craters; (2) test-field topography based on the 1/64° MOLA data; (3) the GT catalogue wherein each of 17,582 craters is aligned with MOLA data and confirmed with catalogues by N.G. Barlow et al. and J.F. Rodionova et al.; (4) selection of methodology for training and testing; and (5) a Free-response Receiver Operating Characteristics (F-ROC) curves as a way to measure CDA performance. The handling of possible improvements of the framework in the future is additionally addressed as a part of discussion of results. Possible extensions with additional test-field subsystems based on visual images, data sets for other planets, evaluation methodologies for CDAs developed for different purposes than cataloguing of craters, are proposed as well. The goal of the proposed framework is to contribute to the research community by establishing guidelines for objective evaluation of CDAs.  相似文献   

6.
    
Impact craters are among the most noticeable geomorphological features on the planetary surface and yield significant information about terrain evolution and the history of the solar system. Thus, the recognition of impact craters is an important branch of modern planetary studies. Aiming at addressing problems associated with the insufficient and inaccurate detection of lunar impact craters, a decision fusion method within the Bayesian network (BN) framework is developed in this paper to handle multi-source information from both optical images and associated digital elevation model (DEM) data. First, we implement the edge-based method for efficiently searching crater candidates which are the image patches that can potentially contain impact craters. Secondly, the multi-source representations of an impact crater derived from both optical images and DEM data are proposed and constructed to quantitatively describe the two-dimensional (2D) and three-dimensional (3D) morphology, consisting of Histogram of Oriented Gradient (HOG), Histogram of Multi-scale Slope (HMS) and Histogram of Multi-scale Aspect (HMA). Finally, a BN-based framework integrates the multi-source representations of impact craters, which can provide reductant and complementary information, for distinguishing craters from non-craters. To evaluate the effectiveness and robustness of the proposed method, experiments were conducted on three lunar scenes using both orthoimages from the Lunar Reconnaissance Orbiter (LRO) and DEM data acquired by the Lunar Orbiter Laser Altimeter (LOLA). Experimental results demonstrate that integrating optical images with DEM data significantly decreases the number of false positives compared with using optical images alone, with F1-score of 84.8% on average. Moreover, compared with other existing fusion methods, our proposed method was quite advantageous especially for the detection of small-scale craters with diameters less than 1000 m.  相似文献   

7.
8.
In this paper, we implement the AdaBoost algorithm to optimize the classifications results of precipitations intensities carried out by One versus All strategy using Support Vector Machine (OvA-SVM). The model developed which combines the AdaBoost algorithm with a multiclass SVM is applied to images from the MSG (Meteosat Second Generation) satellite. Other variants to build multiclass SVMs, such as the OvO-SVM (One versus One SVM), SBT-SVM (Slant Binary Tree SVM) and DDAG-SVM (Decision Directed Acyclic Graph) are also implemented on which we tested the AdaBoost algorithm. The study showed that the AdaBoost algorithm performed better in the case of the OvA-SVM variant compared to the other variants.In order to evaluate the elaborated model, some classification techniques, such as the ECST Enhanced Convective Stratiform Technique (ECST), the SART where the Support vector machine, Artificial neural network and Random forest classifiers are combined, the Convective/Stratiform Rain Area Delineation Technique (CS-RADT) and the Random Forest technique (RFT) are applied. The classification results obtained show that AdaBoost with OvA-SVM (AdaOvA-SVM) presents very interesting performances where the evaluation parameters POD, POFD, FAR, BIAS, CSI and PC indicate the values 95.2%, 12.4%, 14.7%, 0.9, 88.1% and 96.5% respectively. Indeed, the AdaOvA-SVM technique has surpassed the CS-RADT, ECST and RFT techniques. As for the comparison with the SART, we noted that OvA-SVM presents very close results. The same trend was also observed when estimating precipitation. At the end of this study, it is shown that the AdaBoost algorithm performs better on a weak classifier or on a strong classifier operating in an unfavorable environment.  相似文献   

9.
基于树模型机器学习方法的GNSS-R海面风速反演   总被引:1,自引:2,他引:1  
GNSS-R是基于GNSS卫星反射信号的一种新技术.GNSS-R技术可以运用到海面风场反演中,传统的GNSS-R技术反演海面风场主要有波形匹配和经验函数两种方法,风速反演精度约为2m·s-1.波形匹配方法耗时多,计算量大;经验函数方法通常只使用少量物理观测量,会造成信息浪费,损失一定的反演精度.为了提高海面风速的反演精度,引入机器学习领域常用的树模型算法决策树、随机森林、GBDT等对海面风速进行预测.利用GNSS-R与ECMWF数据构成训练集和验证集,训练集用于模型学习,验证集用于检验模型的反演效果.实验结果显示,决策树和随机森林预测误差约为0.6m·s-1,GBDT等算法的预测误差约为2m·s-1,满足风速反演要求.与GNSS-R传统反演方法相比,机器学习树模型算法效果更好,在验证集上表现稳定且误差较小.因此,可以将机器学习树模型算法运用到海面风速反演中.  相似文献   

10.
为保障卫星的正常在轨运行,地面系统需要对卫星运行状态进行监控预警,其中对卫星各系统的温度监控尤为重要.温度不仅直接反映卫星系统的健康状态,更会对系统器件的性能和寿命造成影响.飞轮作为卫星姿态控制系统的重要组件,其温度变化是识别姿态控制系统状态的重要信息.卫星飞轮温度的预测与预警对卫星在轨稳定运行具有重要意义.本文基于某在轨卫星遥测数据,结合空间环境数据,应用LightGBM机器学习框架研究建立梯度提升决策树模型,对卫星飞轮温度进行预测.经与实际遥测温度值进行对比验证,预测精度可以满足对卫星飞轮温度的监视需求.研究结果可应用于地面系统,对卫星姿态控制系统可能发生的温度异常进行预警,使地面运控人员能够提前规避风险,保障卫星的安全在轨运行.  相似文献   

11.
量子科学实验卫星在轨运行期间完成4种光学实验,地面监测人员通过遥测参数阈值判断卫星是否进行光学实验、实验类型及实验结果.这种方法需要预先设定大量阈值,并且这些阈值需要根据在轨卫星重新设定,可扩展性较差.针对以上问题,提出一种基于机器学习的光学实验判别方法,将量子科学实验卫星的光学实验监测任务抽象为机器学习中的多元分类问题,构建分类模型,利用量子科学实验卫星的真实历史遥测数据对模型进行训练,并通过真实实验计划对训练得到的模型进行验证.实验结果表明,本文提出的方法在没有专家先验知识的前提下,判别准确率达到99%,可用于量子科学实验卫星光学实验的实时监测任务.提出的基于机器学习的判别方法具有较强的可扩展性,可应用于卫星在轨运行的其他监测任务.  相似文献   

12.
Single crater-aided inertial navigation for autonomous asteroid landing   总被引:1,自引:0,他引:1  
In this paper, a novel crater-aided inertial navigation approach for autonomous asteroid landing mission is developed. It overcomes the major deficiencies of existing approaches in the literature, which mainly focuses on the case where craters are abundant in the camera field of view. As a result, traditional crater based methods require at least three craters to achieve crater matching, which limits their application in final landing phase where craters are scarce in the camera’s field of view. In contrast, the proposed algorithm enables single crater based crater matching based on a novel 2D-3D crater re-projection model. The re-projection model adopts inertial measurements as a reference, and re-projects the 3D crater model onto descent images to achieve the matching to its counterpart. An asteroid landing simulation toolbox is developed to validate the performance of the proposed approach. Through comparison with the state-of-the-art local image feature and crater based navigation algorithms, the proposed approach is validated to achieve a competitive performance in terms of feature matching and pose estimation accuracy with a much lighter computational cost.  相似文献   

13.
    
With the development of space exploration and space environment measurements, the numerous observations of solar, solar wind, and near Earth space environment have been obtained in last 20 years. The accumulation of multiple data makes it possible to better use machine learning technique, which has achieved unforeseen results in industrial applications in last decades, for developing new approaches and models in space weather investigation and prediction. In this paper, the efforts on the forecasting methods for space weather indices, events, and parameters using machine learning are briefly introduced based on the study works in recent years. These investigations indicate that machine learning, especially deep learning technique can be used in automatic characteristic identification, solar eruption prediction, space weather forecasting for solar and geomagnetic indices, and modeling of space environment parameters.  相似文献   

14.
随着处理器的系统结构日趋复杂,设计空间呈指数式增长,并且软件模拟技术极为费时,成为处理器设计的重要挑战。提出了一种结合集成学习和半监督学习技术的高效设计空间探索方法。具体而言,该方法包括2个阶段:使用均匀随机采样方法从处理器设计空间中选择一小组具有代表性的设计点,通过模拟获得性能响应,从而组成训练数据集;提出基于半监督学习的AdaBoost(SSLBoost)模型预测未模拟的样本配置的响应,从而搜索最优的处理器设计配置。实验结果表明,与现有的基于人工神经网络和支持向量机(SVM)的有监督预测模型相比,SSLBoost模型能够使用更少的模拟样本构建出不差于现有方法性能的预测模型;而当模拟样本数量相同时,SSLBoost模型的预测精度更高。   相似文献   

15.
地磁Kp指数是空间天气预警的重要指标, 也是研究太阳风–磁层耦合的关键参数. 采用梯度提升回归(GBR)算法和随机森林(RF)两种机器学习方法, 构建了以太阳风、行星际磁场参数、历史Kp值和太阳黑子数据为输入的3 h 地磁 Kp指数预报模型. 预报结果表明, 两种方法均可提前1 h预报地磁Kp指数, 预测结果与观测值之间的相关系数为0.90, 其中GBR方法在均方根误差上表现出更好的效果, 均方根误差为0.56. Kp指数预报模型在太阳活动周不同相位的预测结果存在差异, 在活动周下降阶段模型预测结果与观测数据的相关系数更高. 比较了不同地磁扰动下模型的预测情况, 相比中等磁暴和超强磁暴, 模型对强磁暴(6≤Kp<7)的预报准确度最高.  相似文献   

16.
以火星采样返回任务中火星表面上升为背景,研究了基于惯性测量单元(Inertial Measurement Unit, IMU)、嵌入式大气数据传感系统(Flush Air Data Sensing System, FADS)和无线电信标的组合导航方法。首先,在传统的IMU导航框架中加入由无线电测量获得的相对距离、速度信息,以及由FADS获取的动压、温度数据,建立了基于IMU、无线电和FADS的导航观测模型;然后,基于无迹卡尔曼滤波(Unscented Kalman Filter, UKF)技术对测量信息进行了融合,并压制了过程噪声和测量噪声,从而对上升器的状态进行了联合估计;最后,在数值仿真中,将UKF与自适应无迹卡尔曼滤波(Adaptive Unscented Kalman Filter, AUKF)技术进行了对比,在比较不同滤波器性能的同时,验证了组合导航方法的有效性。  相似文献   

17.
This paper presents a feedback guidance algorithm for proximity operation in cislunar environment based on actor-critic reinforcement learning. The algorithm is lightweight, closed-loop, and capable of taking path constraints into account. The method relies on reinforcement learning to make the well known Zero-Effort-Miss/Zero-Effort-Velocity guidance state dependent and allow for path constraints to be directly embedded. The algorithm is tested in the circular restricted three-body problem (CRTBP) framework for Near Rectilinear Orbits (NRO) in the Earth-Moon system. It shows promising results in terminal guidance error and satisfies path constraints in constraint scenarios comprising spherical constraints and keep-out-spheres with approach corridors. Furthermore, this approach indicates that reinforcement learning can be effectively used to solve constrained relative spacecraft guidance problems in complex environments and thus can be effective for autonomous relative motion operations in the Earth-Moon dynamical environment.  相似文献   

18.
    
In this paper we analyze the possibilities of using machine learning algorithms for analysis of optical spectra of electric discharge spark in atmosphere. Breakdown in air can be initiated by intense laser pulse, making plasma which has a significant electrical conductivity. The formed plasma can be further maintained by electric current obtained from capacitor discharge. In such a case the capacitor voltage can be much lower than the striking voltage (the voltage needed to initiate the electric breakdown in air). Present setup has timing precision and low jitter of fast laser and arbitrary high energies corresponding to capacitance and voltage to which the capacitor is charged. We have used a streak camera equipped with a spectrograph to analyze optical emission of plasma obtained in this way. Q-switched Nd:Yag laser was used to achieve the initial breakdown in air. Machine learning methods were used in order to classify optical spectra of plasmas with different electron temperatures obtained with different excitation energies. We have shown that, instead of using the usual way of identifying the spectral peaks and calculating their intensity ratio, it is possible to train the computer software to recognize the spectra corresponding to different electron temperatures. Principal component analysis was used to reduce the dimensionality of problem. We present possibilities of plasma electron temperature estimation based on several clustering algorithms.  相似文献   

19.
    
Solar cycle prediction is a key activity in space weather research. Several techniques have been employed in recent decades in order to try to forecast the next sunspot-cycle maxima and time. In this work, the Gaussian process, a machine-learning technique, is used to make a prediction for the solar cycle 25 based on the annual sunspot number 2.0 data from 1700 to 2018. A variation known as Warped Gaussian process is employed in order to deal with the non-negativity constraint and asymmetrical data distribution. Tests using holdout data yielded a root mean square error of 10.0 within 5 years and 25.0–35.0 within 10 years. Simulations using the predictive distribution were performed to account for the uncertainty in the prediction. Cycle 25 is expected to last from 2019 to 2029, with a peak sunspot number about 117 (110 by the median) occurring most likely in 2024. Thus our method predicts that solar Cycle 25 will be weaker than previous ones, implying a continuing trend of declining solar activity as observed in the past two cycles.  相似文献   

20.
Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号