首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe an alternate way to estimate Broad Line Region (BLR) radii for type-1 AGN based on determination of physical conditions in the BLR under the assumption that the line emitting gas is photoionized by a central continuum source. We derive “diagnostic” intensity ratios involving UV lines Aliiiλλ1860, Siiii]λλ1892 and Civλλ1549 which enable us to compute the ionizing photon flux, and hence BLR radius from the ionization parameter definition. We compare our estimates of BLR radii with values independently obtained from reverberation monitoring of Hββ and, in a few cases, of C ivλλ1549. We analyze the interpretation of the photoionization estimates in the 4D eigenvector 1 context, and discuss in some detail the case of 3C 390.3. For this object we are able to provide not only the ionizing photon flux, but also an estimate of density and ionization parameter from the measured diagnostic ratios. We also compare black hole masses obtained from this method with values derived from widely-applied correlations between mass, line broadening and luminosity. Good agreement is found for both radius and black hole mass comparisons.  相似文献   

2.
Quasars are the most luminous sources in the Universe. They are currently observed out to redshift z≈7z7 when the Universe was less than one tenth of its present age. Since their discovery 50 years ago astronomers have dreamed of using them as standard candles. Unfortunately quasars cover a very large range (8 dex) of luminosity making them far from standard. We briefly review several methods that can potentially exploit quasars properties and allow us to obtain useful constraints on principal cosmological parameters. Using our 4D Eigenvector 1 formalism we have found a way to effectively isolate quasars radiating near the Eddington limit. If the Eddington ratio is known, under several assumptions it is possible to derive distance independent luminosities. We discuss the main statistical and systematic errors involved, and whether these “standard Eddington candles” can be actually used to constrain cosmological models.  相似文献   

3.
The evolution of luminous QSOs is linked to the evolution of massive galaxies. We know this because the relic black-holes found locally have masses dependent on the properties of the host galaxy’s bulge. An important way to explore this evolution would be to measure dependences of black-hole masses and Eddington accretion ratios over a range of redshifts, i.e., with cosmological age. For low redshift QSOs (and their lower luminosity Seyfert galaxy counterparts) it has been possible to infer black-hole masses from the luminosities and velocity dispersions of their host-galaxy bulges. These masses agree with those virial black-hole masses calculated from the Doppler widths of the broad Hβ emission lines. The latter method can then be extended to more distant and luminous QSOs, up to redshifts of 0.6 with ground-based optical observations. We discuss ways to extend these explorations to higher redshifts – up to 3 using the widths of QSOs’ broad UV emission lines, and in principle, and to redshifts near 4 from ground-based infrared observations of rest-frame Hβ at 2.5 μm. We discuss the possibility of investigating the accretion history of the higher redshift QSOs using measures of Eddington accretion ratio – the soft X-ray spectral index and the eigenvectors of Principal Components Analyses of QSOs’ UV emission-line spectra.  相似文献   

4.
Broad absorption line (BAL) variability potentially represents a powerful tool to investigate the physical nature and the structure of gas outflows in active galactic nuclei. Most existing BAL variability studies rely on observations taken at a few epochs for samples of tens of BAL QSOs. In this study we present the first “monitoring” of a single object, APM 08279+5255, which has been observed more than 20 times since 2003. All available spectra from the literature have also been analysed, including two high resolution spectra, extending the time interval from 1998 to 2012. A relative stability of the shape of the absorption profile is found. At the same time significant variations of the equivalent width are observed. A correlation of the BAL equivalent width with the QSO luminosity is found for the first time. These results suggest that changes in the ionisation state of the gas are causing opacity changes.  相似文献   

5.
To understand the connection among the subclasses of BL Lac Objects, FR I radio galaxies and Flat spectrum radio quasars (FSRQs), here the correlations of the bolometric luminosities with redshifts and brightness temperatures of these objects are studied. The bolometric luminosities vary linearly with redshifts, but few objects are scattered at high redshift. The bolometric luminosity versus brightness temperature distribution shows a correlation between these two components, except a few scattered objects, mostly RBLs. The bolometric luminosities and brightness temperatures of FR I radio galaxies with low redshift (<0.1) and low spectral index (αrx < 0.75) are comparable to those of XBLs and those characteristics of FR I radio galaxies, with relatively high redshift (>0.2) and high spectral index, can be comparable with RBLs with low redshift (z < 0.5) and low bolometric luminosity. Those scattered RBLs with high redshifts (z > 0.5) are believed to be in complex environment with companion galaxies, most of these RBLs are still unresolved. The bolometric luminosity and brightness temperature of these scattered RBLs are comparable to those of quasars. The FSRQs are at high redshifts and bolometric luminosities and the brightness temperatures are also high relative to BL Lac Objects. These results support the FRI/BL Lac unification scheme. It suggests that, the FR I radio galaxies may be the parent populations of the BL Lac Objects, but it needs more investigation to confirm the unification of FR I radio galaxies, XBLs and RBLs.  相似文献   

6.
In order to investigate where and how low ionization lines are emitted in quasars we are studying a new collection of spectra of the CaII triplet at λ8498, λ8542, λ8662 observed with the Very Large Telescope (VLT) using the Infrared Spectrometer And Array Camera (ISAAC). Our sample involves luminous quasars at intermediate redshift for which CaII observations are almost nonexistent. We fit the CaII triplet and the OI λ8446 line using the Hβ profile as a model. We derive constraints on the line emitting region from the relative strength of the CaII triplet, OI λ8446 and Hβ.  相似文献   

7.
An extensive program to study nearby normal galaxies was carried out by various observers using the imaging instruments on the Einstein Observatory; more than 50 such galaxies were detected with 0.5 – 3.0 keV luminosities ranging from 2 × 1038 ergs s?1 to 3 × 1041ergs s?1. The X-ray luminosity of normal galaxies is ~2 × 10?4 of the optical luminosity and shows no strong correlation with morphological type. For the nearest galaxies, (the Large and Small Magellanic Clouds, M31 and M33,) studies, performed with the Observatory, were comparable to the Uhuru survey of the Galaxy. Approximately 30 new SNR were recognized in the Magellanic Clouds as a result. Over 90 sources were detected in M31 of which at least 20 are identified with globular cluster. The numbers of luminous (>1037 ergs s?1) sources detected in the nearest galaxies per unit mass are similar to that found in our own galaxy. Individual X-ray sources in the arms of nearby spirals can be very luminous; seven with luminosities in excess of 1039ergs s?1 have been discovered. The nuclei of some, but not all, normal galaxies are luminous X-ray sources; X-ray activity is not presently predictable from the radio or optical properties of the nucleus.  相似文献   

8.
The determination of fundamental parameters in X-ray luminous (persistent) X-ray binaries has been classically hampered by the large optical luminosity of the accretion disc. New methods, based on irradiation of the donor star and burst oscillations, provide the opportunity to derive dynamical information and mass constraints in many persistent systems for the first time. These techniques are here reviewed and the latest results presented.  相似文献   

9.
We review the present knowledge on the cosmological evolution of quasars, by discussing some of the recent results obtained from studies of optically selected objects. Despite the fast development of prism survey tecniques, the color selection still appears to be the best tecnique for constructing the complete samples which are necessary for statistical studies. It is shown, however, that even the best available complete samples of quasars selected on the basis of ultraviolet excess (z < 2.2) are not sufficient to univocally determine the “correct” evolutionary model. Moreover, some preliminary results suggest that the evolution law derived from quasars with mB<20 and z<2.2 can not be extrapolated to fainter magnitudes and higher redshifts. On the basis of what is known today about the optical and X-ray properties of quasars, we then discuss some of teh possible results, relevant to cosmology, which can be achieved with future coordinated optical and X-ray observations of quasars.  相似文献   

10.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

11.
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open.  相似文献   

12.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

13.
An analysis of the variability timescale against bolometric luminosity for Active Galactic Nuclei shows that a number of sources violate the Eddington limit. The average ratio (L/LE) is found to change according to group classification. Whilst Seyfert Galaxies have luminosites well within the Eddington limit, Quasars and BL Lac object tend to approach and exceed this limit. Furthermore, BL Lac objects may be further subdivided on the basis of their (L/LE) ratio. The data on luminosity and variability timescale indicate the existence of two types of active galaxies, one having highly anisotropic emission, probably collimated into jets with pointing angles within few degrees to the line of sight, and the other relating to isotropic emission of photons from the nuclear region. The results are discussed in the light of the high γ-ray luminosity suggested by recent observations of active galaxies.  相似文献   

14.
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs.  相似文献   

15.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   


16.
Imaging X-ray observations of normal spiral galaxies show extended and complex x-ray emission, easily explainable with a complex of unresolved X-ray sources. A variety of nuclear sources, including starburst nuclei and miniature active nuclei are seen. The total (0.5–3.0 keV) luminosities are in the range of Lx 1038 - 1040 erg s−1. The X-ray luminosity is linearly correlated with the optical luminosity. It is also correlated with the radio continuum luminosity at 21cm, but following a power law relationship with an exponent α = 0.6. This latter relationship might have implications on the Population I X-ray binary formation models and/or on the origin of the radio continuum emission in spiral galaxies  相似文献   

17.
We use the combined photometric GALEX + SDSS database to look for populations of luminous blue star-forming galaxies. These were initially identified from such a sample at redshifts near 0.4, using SDSS spectra. We make use of the NUV, g, and i colour index previously defined in our previous paper, to separate stars and QSOs, to locate more of these unusual galaxies, to fainter limits. They are found in significant numbers in two different regions of the related colour-magnitude plot. Within these regions, we use the ensemble 7-colour photometry (FUV, NUV, u, g, r, i, z) to postulate the populations of blue star-forming galaxies at redshifts near 0.4 and 1.0, from a full photometric sample of over half a million.  相似文献   

18.
Two soft X-ray images of the Chamaeleon I star forming cloud obtained with the ROSAT Position Sensitive Proportional Counter are presented. Seventy reliable, and perhaps 19 additional, X-ray sources are found. Up to Ninety percent of these sources are certainly or probably identified with T Tauri stars formed in the cloud. Twenty to 35 are probably previously unrecognized ‘weak’ T Tauri (WTT) stars. T Tauri X-ray luminosities range from log , or 102 – 104 times solar levels, with mean in the 0.2–2.5 keV band. The X-ray luminosities of well-studied Chamaeleon cloud members are correlated with a complex of four stellar properties: effective temperature, mass, radius and bolometric luminosity. The spatial distribution, H-R diagram locations of the stars indicate WTT and CTT are coeval. The total premain sequence population of the cloud is likely to be > 100 stars, with WTT stars outnumbering ‘classical’ T Tauri (CTT) stars by 2:1.  相似文献   

19.
We examine recent supernovae which have been observed with very-long-baseline interferometry in order to detect or limit the emission from a possible compact remnant of the explosion. Such a remnant could be a neutron star, generating a pulsar wind nebula, or a black hole with an accretion disk and jets. Four supernovae, and also more than a dozen supernovae or their young remnants in M82, have structure sufficiently resolved to allow useful conclusions as to the strength of the emission from such young neutron stars or black holes. We recently discovered a compact component in the center of SN 1986J’s shell with a spectral luminosity at 15 GHz 200 times that of the Crab Nebula. This is most likely the compact remnant of the explosion, the first and only one found in any modern supernova. For other modern supernovae, the upper limits on the radio spectral luminosities of such young compact remnants range from 180 times that of the Crab Nebula for SN 1979C in M100 in the Virgo cluster to 0.001 times that of the Crab Nebula for SN 1987A in the Large Magellanic Cloud.  相似文献   

20.
ROSAT All Sky Survey observations of IRAS galaxies have revealed up to now a number of 10 optically non-Seyfert galaxies with X-ray (0.1–2.4) luminosities up to a few 1043erg · s−1 (Boller et al. 1992). The sources are brighter than previous detection limits of a few 1041erg · s−1 as found by Stocke et al. (1991) or Green, Anderson and Ward (1992) for Einstein sources. The optical classification is based on follow-up observations which indicate clearly the non-Seyfert (LINER and HII region-like galaxies) nature. Our investigations reveal that galaxies classified as non-Seyferts on the basis of optical spectroscopy may reach exceptionally high X-ray luminosities which are similar to that of Seyfert galaxies. On the basis of the present observational material we suppose a hidden low luminosity AGN in the centre of these objects as the source of energy production. The objects are of interest when evaluating starburst versus central activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号