首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historically, solar energetic particle (SEP) events are classified in two classes as “impulsive” and “gradual”. Whether there is a clear distinction between the two classes is still a matter of debate, but it is now commonly accepted that in large “gradual” SEP events, Fermi acceleration, also known as diffusive shock acceleration, is the underlying acceleration mechanism. At shock waves driven by coronal mass ejections (CMEs), particles are accelerated diffusively at the shock and often reach > MeV energies (and perhaps up to GeV energies). As a CME-driven shock propagates, expands and weakens, the accelerated particles can escape ahead of the shock into the interplanetary medium. These escaping energized particles then propagate along the interplanetary magnetic field, experiencing only weak scattering from fluctuations in the interplanetary magnetic field (IMF). In this paper, we use a Monte-Carlo approach to study the transport of energetic particles escaping from a CME-driven shock. We present particle spectra observed at 1 AU. We also discuss the particle “crossing number” at 1AU and its implication to particle anisotropy. Based on previous models of particle acceleration at CME-driven shocks, our simulation allows us to investigate various characteristics of energetic particles arriving at various distances from the sun. This provides us an excellent basis for understanding the observations of high-energy particles made at 1 AU by ACE and WIND.  相似文献   

2.
It is well known that the rich, highly complicated field configurations of the Heliospheric Magnetic Field has an essential effect on the cross-field propagation of charged particles of relatively low rigidity. In this process the field line separation is the most significant factor of the magnetic structure. The aim of this paper is to develop a framework, in which the particle transport can be investigated for various types of field-line separation. It turns out that the presence of any diffusive cross-field motion of the particles, even if it is arbitrarily small, can wash out most of the details belonging to a specific field line separation model. In that case the overall cross-field motion is forced to become diffusive, irrespectively of the type of the field line spreading, whether this spreading is diffusive, or even non-diffusive in nature. For the various separation models the expressions derived are very similar.  相似文献   

3.
For about the last 40 years, we have been trying to understand the propagation of cosmic rays and other energetic charged particles through the interplanetary medium. Identification of the basic processes affecting the propagation, namely diffusion, convection by the solar wind, adiabatic deceleration, and gradient and curvature drifts, was attained early on, but reaching detailed physical understanding, particularly of the roles of diffusion and gradient and curvature drifts, continues as an active topic of research to this day. Particularly unclear is the nature of the cross-field propagation. Many observations seem to require more efficient cross-field propagation than theoretical propagation models can easily produce. At the same time, there are other observations that seem to show strong guidance of the particles by the interplanetary magnetic field. With current measurements from spacecraft near Earth and from the Ulysses spacecraft, which samples nearly the complete range of heliographic latitudes in the inner heliosphere, critical tests of the ways in which cosmic rays and other energetic charged particles propagate through the interplanetary medium are possible. I briefly review the status of observations that are relevant to the characterization of diffusive propagation in the inner heliosphere and will present evidence for a possibly previously overlooked contribution from transport along magnetic flux tubes that deviate dramatically from the average interplanetary spiral configuration.  相似文献   

4.
A two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. This model has already been used with some success for simulation of some major features of type II shocks and white light coronal transients. In this presentation, we have studied the effects of initial magnetic topology and strength on the formation of MHD shocks. We consider the plasma beta (thermal pressure/magnetic pressure) as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfvén Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. We suggest that this model (computed self-consistently) provides the shock wave and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.  相似文献   

5.
Cosmic ray modulation in the outer heliosphere is discussed from a modeling perspective. Emphasis is on the transport and acceleration of these particles at and beyond the solar wind termination shock in the inner heliosheath region and how this changes over a solar cycle. We will show that by using numerical models, and by comparing results to spacecraft observations, much can be learned about the dependence of cosmic ray modulation on solar cycle changes in the solar wind and heliospheric magnetic field. While the first determines the heliospheric geometry and shock structure, the latter results in a time-dependence of the transport coefficients. Depending on energy, both these effects contribute to cosmic ray intensities in the inner heliosheath changing over a solar cycle.  相似文献   

6.
The low solar atmosphere is composed of mostly neutral particles, but the importance of the magnetic field for understanding observed dynamics means that interactions between charged and neutral particles play a very important role in controlling the macroscopic fluid motions. As the exchange of momentum between fluids, essential for the neutral fluid to effectively feel the Lorentz force, is through collisional interactions, the relative timescale of these interactions to the dynamic timescale determines whether a single-fluid model or, when the dynamic frequency is higher, the more detailed two-fluid model is the more appropriate. However, as many MHD phenomena fundamentally contain multi-time-scale processes, even large-scale, long-timescale motions can have an important physical contribution from two-fluid processes. In this review we will focus on two-fluid models, looking in detail at two areas where the multi-time-scale nature of the solar atmosphere means that two-fluid physics can easily develop: shock-waves and instabilities. We then connect these ideas to observations attempting to diagnose two-fluid behaviour in the solar atmosphere, suggesting some ways forward to bring observations and simulations closer together.  相似文献   

7.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

8.
We calculate the maximum energy that a particle can obtain at perpendicular interplanetary shock waves by the mechanism of diffusive shock acceleration. The influence of the energy range spectral index of the two-dimensional modes of the interplanetary turbulence is explored. We show that changes in this parameter lead to energies that differ in at least one order of magnitude. Therefore, the large scale structure of the turbulence is a key input if the maximum particle energy is calculated.  相似文献   

9.
We study time evolution of an energy spectrum of a proton flux in the range of 47 – 4750 keV for the energeticparticle event occurred on 255 DOY in 1999, which we consider as one of typical diffusive acceleration events associated with interplanetary shocks and irrespective of large X-ray solar flares. Fast enhancement during evolution is found in the range of less than about 0.5 MeV. Our previous numerical simulations using Stochastic Differential Equation method could not show this behavior, although we obtained results showing a power law energy spectrum, which suggesting that energetic particles are accelerated diffusively by shock waves, the first-order Fermi acceleration. We consider that less than 0.5 MeV protons need to exist to explain behavior of the observational energy spectrum and perform numerical simulations in order to investigate proper injection models for this event.  相似文献   

10.
Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading); hence, they can energize the incoming ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind. It is suggested that Comet Halley may be the most efficient “cosmic ray shock” in the solar system.  相似文献   

11.
This paper discusses the transport of energetic charged particles through a sectored magnetic field in distant regions of the inner heliosheath. As the plasma flow slows down on approach to the stagnation point on the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of a cosmic ray particle. Under these conditions a particle can effectively drift across the stack of magnetic sectors with a speed comparable with the particle’s velocity. For a random distribution of current sheet separation distances, a diffusive transport across the stack of sectors occurs instead. The proposed mechanism could have contributed to unusually high intensities of galactic cosmic rays measured by Voyager 1 in the heliosheath during 2009–2010.  相似文献   

12.
采用三维模型,使用混合网格质点法HPIC(Hybrid Particle-in-Cell)对膨胀的磁场和太阳风相互作用过程进行数值模拟.研究了线圈产生的偶极子磁场在注入等离子体后和太阳风粒子的相互作用过程,并对以不同速度入射的等离子体引起的太阳风粒子的变化和磁场变化进行了比较.研究结果表明,偶极子磁场和太阳风作用时会产生弓形激波,此时磁压等于太阳风粒子的动压,当向线圈产生的偶极子磁场中注入高能等离子体时引起磁场膨胀,膨胀的磁场将会排斥太阳风粒子向外运动,从而引起弓形激波的变化,增大与太阳风相互作用的面积,并且粒子入射速度越大,磁场膨胀越明显,与太阳风相互作用愈强.   相似文献   

13.
孙鹏  秦刚  王赤 《空间科学学报》2007,27(6):441-447
在具有湍动的磁场和垂直激波条件下对大量测试粒子的轨迹进行了数值计算,研究了激波强度和粒子初始能量对于粒子穿越激波的平均能量变化的影响,分析了漂移加速(SDA)在不同条件下对粒子加速的贡献,并给出了一个与数值结果相符合的漂移加速理论公式△E=amvivup(1-1/s).结果表明,加入磁场湍流后,垂直激波条件下粒子仍主要受到漂移加速作用,而基于粒子引导中心的耗散漂移加速理论在此条件下失效.   相似文献   

14.
In this study the roles of polar perpendicular diffusion and drifts are illustrated in a model containing a heliosheath and diffusive shock acceleration as applied to the solar wind termination shock. Of particular interest is the relation of polar perpendicular diffusion to particle drifts and how the effectiveness of the termination shock acceleration of galactic and anomalous protons is influenced by this relation. We found that drifts have a more prominent effect than the polar enhancement of perpendicular diffusion so that its omission from termination shock models would produce unrealistically large shock acceleration and consequently also larger modulation effects throughout the heliosphere. The computed spectra at a heliolatitude of 35° are almost similar for the two polarity epochs indicating that the two Voyager spacecraft might not observe differences between the two cycles in future.  相似文献   

15.
Galactic cosmic rays interact with the solar wind, the earth's magnetic field and its atmosphere to produce hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.  相似文献   

16.
本文利用太阳能量粒子事件中重离子平均丰度过量的资料,计算得到太阳能量粒子源物质的温度,提出了描述太阳宇宙线能量粒子源物质的新模式——高色球层模式;太阳耀斑观测确定,太阳宇宙线耀斑的加速区一般最可能出现在低日冕甚至高达几万公里的高度,从而,太阳宇宙线的源和加速区通常不位于同一区域;进而提出了描述太阳能量粒子事件中重离子丰度过量的可能机制——其源物质是通过太阳黑子的冻结型无力场从高色球层输送到活动区,形成耀斑前加速区内重离子丰度大和耀斑后宇宙线中重元素丰度的过量.   相似文献   

17.
Numerical simulations of two types of flares indicate that magnetic reconnection can provide environments favorable for various particle acceleration mechanisms to work. This paper reviews recent test particle simulations of DC electric field mechanism, and discusses how the flare particles can escape into the interplanetary space under different magnetic configurations.  相似文献   

18.
One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and during substorms. The problem is that it is not clear the structure of the magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electron acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.  相似文献   

19.
COIN-TVD MHD模型是近年发展起来的能有效实现日冕–行星际三维太阳风模拟的模型.本文利用此模型针对日冕区三维太阳风进行研究,为了模拟日冕太阳风的加热加速,对模型中的体积加热项做了调整.在磁流体模拟中,减小磁场散度的误差是关键问题之一,在调整体积加热项后应用扩散法、八波法、扩散八波法,对2199卡林顿周的背景太阳...  相似文献   

20.
A simple shock model for the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIR's. The model is able to account for the observed exponential spectra at earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号