首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
变速控制力矩陀螺(VSCMG)是一种飞轮转速可变的单框架控制力矩陀螺,可工作在控制力矩陀螺(CMG)模式、飞轮(RW)模式以及VSCMG模式.考虑VSCMG的工作特点,设计一种工作模式自主调度的操纵律.当系统远离奇异时,仅以CMG模式工作,产生大的输出力矩.当系统接近奇异时,以VSCMG模式工作,采用RW协助CMG回避奇异.当航天器处于姿态稳定模式需要精细控制力矩时,仅以RW模式工作.该操纵律由模式调度策略、CMG操纵律、RW操纵律3部分组成,把一个3×2N矩阵的求伪逆问题转化为两个3×N矩阵的求伪逆问题,物理意义明显,奇异回避易于实现.对某4-VSCMG系统的仿真结果表明,上述操纵律是可行的.  相似文献   

2.
单框架控制力矩陀螺(SGCMG)在卫星姿态控制中以其具有大力矩输出能力而受到重视并已成功应用于在轨卫星,其应用难点是构形奇异问题,特别是在快速连续机动的过程中,CMG框架角必须迅速脱离奇异状态.使用描述CMG输出力矩和期望控制力矩夹角的奇异度量方法,以便在仿真中观察判别CMG构形的奇异程度.着重改进CMG的奇异鲁棒操纵律,应用高斯函数的方法确定鲁棒系数.仿真实例表明,与传统的梯度型零运动相比,该方法可以在卫星的连续快速机动中使CMG系统更为迅速地摆脱奇异,更为快速地完成机动并减小姿态抖动.  相似文献   

3.
高姿态稳定度敏捷卫星的VSCMGs操纵律研究   总被引:2,自引:0,他引:2  
  研究采用变速控制力矩陀螺群(VSCMGs)作为姿态控制执行机构的高姿态稳定度敏捷卫星的操纵律设计问题。将VSCMG分为控制力矩陀螺(CMG)和动量轮(MW)两种工作模式,针对每种工作模式进行奇异性分析,并给出逃避奇异的方法。为了获得较好的控制效果,还研究了VSCMG群转子转速向标称转速平衡的方法以及通过调整转子轴构型使转子转速快速返回到标称值的方法。最后通过对算例进行仿真,验证了所设计的操纵律的有效性。  相似文献   

4.
摘要: 控制力矩陀螺是航天器姿态控制系统的重要执行机构,它具有输出力矩大、速度响应快、功率消耗低、寿命长等优点,可以完成高速率的姿态机动控制.综合考虑谐波减速器的齿隙模型、非线性刚度、减速器效率等因素,对CMG框架驱动组件用谐波减速器进行精细建模.针对低速下谐波减速器的刚度较低、传动误差较大这一缺陷,建立考虑传动误差的减速器模型;与传统的不考虑传动误差的模型相比可更准确地描述谐波减速器在低速下的输出速度曲线.根据建立的CMG框架驱动系统模型,在低速下采用PID闭环控制对输出转速误差进行抑制,使输出转速误差降低了50%以上.最后分析其对谐波减速器刚度和阻尼对框架系统性能的影响.  相似文献   

5.
为实现遥感卫星的高精度指向能力,对遥感卫星星上常用执行机构控制力矩陀螺扰动及性能指标评定进行了研究。首先,充分考虑小型控制力矩陀螺的静动不平衡量以及框架轴的安装误差,根据动量定理和动量矩定理建立了完整的星载小型控制力矩陀螺的动力学模型,并对所建立模型的正确性进行了理论分析和仿真验证;其次,将含有扰动特性的小型控制力矩陀螺应用到星上,建立了整星动力学模型,并选用合适的框架伺服控制系统和转子伺服控制系统,完成整星的姿态稳定控制任务;最后,采用数值仿真的方式分析了陀螺转子静动不平衡因素以及框架角测量误差对星体姿态精度和稳定度带来的影响。结合任务要求,对小型控制力矩陀螺设计提出静动不平衡量等指标要求,以期使其满足星上光学有效载荷的成像要求。  相似文献   

6.
由控制力矩陀螺群构成的姿态控制系统是目前敏捷卫星实现姿态快速机动和精确控制的最佳选择,而低速框架的控制精度、响应速度与稳定性直接决定了控制力矩陀螺的工作性能.针对敏捷卫星对控制力矩陀螺工作性能的高要求,本文提出了一种框架的高性能控制方案——基于永磁同步电机及磁场定向控制算法,并结合框架角速度观测器的直接驱动控制方案.在框架角速度极低时,为解决角度传感器的分辨率无法满足控制精度要求的问题,引入Luenberger状态观测器获得框架角速度的观测值,并将该观测值引入框架角速度闭环控制系统.理论分析、仿真实验的结果证明了该方案的有效性.随后,针对电机参数漂移对观测值的影响进行了仿真分析,仿真结果证明了基于观测器的角速度闭环控制系统的鲁棒性.  相似文献   

7.
基于力矩输出能力最优的SGCMG操纵律设计   总被引:1,自引:0,他引:1  
为使SGCMG系统在有效回避奇异的同时能够较精确地输出期望力矩, 设计了一种基于力矩输出能力最优原理的SGCMG联合操纵律. 根据期望力矩矢量及SGCMG力矩输出的几何关系, 提出了新的系统奇异状态指标, 给出使力矩输出能力最优的框架角速度; 引入优化指标, 使得框架转速误差和输出力矩误差的混合二次型最小, 保证在力矩输出能力达到最优的同时也使得输出力矩误差最小. 采用奇异值分解理论证明了联合操纵律在奇异面处不存在框架锁定现象, 能够有效地逃离奇异, 同时分析了所设计操纵律的力矩输出误差. 以金字塔构型SGCMG系统为例, 对所设计的联合操纵律分别进行了恒定力矩仿真和卫星大角度机动仿真. 仿真结果表明, 联合操纵律能够顺利回避角动量奇异面, 不存在奇异鲁棒操纵律存在的框架锁定现象, 且输出力矩误差较非对角奇异鲁棒操纵律小, 能够顺利完成航天器大角度机动任务.   相似文献   

8.
控制力矩陀螺(CMG,control moment gyro)系统存在多种误差与扰动,影响航天器的姿态控制精度.分析了大型单框架控制力矩陀螺(SGCMG,single gimbal control moment gyro)各主要组成部分的特性、误差及扰动,包括转子动静不平衡、转子轴的安装误差、轴承摩擦、转子电机特性、框架电机特性和谐波减速器特性.通过建立大型SGCMG的动力学精细模型并进行数学仿真,得到了大型SGCMG主要误差与扰动对其输出力矩的影响:在框架伺服系统加装谐波齿轮减速机构可以明显提高SGCMG输出力矩精度,同时也给框架带来高频谐振;转子动不平衡造成的扰动力矩是导致SGCMG在其力矩输出轴和框架轴方向产生输出力矩偏差的主要原因.  相似文献   

9.
研究了以变速控制力矩陀螺(VSCMG)作为执行机构的航天器姿态跟踪问题.建立了以VSCMG为执行机构的航天器姿态动力学模型, 引入一阶稳定的线性角速度滤波方程, 同时, 根据Lyapunov稳定性定理, 设计了闭环系统的控制律. 利用加权的最小范数解得到VSCMG的姿态控制输入矢量. 提出了表征VSCMG构型的新奇异度量, 在其基础上利用梯度法构建了VSCMG的零运动, 以回避VSCMG的构型奇异, 并使转子转速趋于期望值. 以四陀螺金字塔构型为例进行仿真,仿真结果验证了该算法的可行性和有效性.   相似文献   

10.
为弥补水下运载器(AUV,Autonomous Underwater Vehicle)中传统舵面控制机构的低速控制的不足,改善其操纵性能,引入单框架控制力矩陀螺(SGCMG,Single Gimbal Control Moment Gyro)作为控制机构进行姿态稳定与控制.把AUV简化为刚体,加入SGCMG,考虑水下环境的特点,建立基于SGCMG的AUV动力学模型,并仿真分析AUV的动力学、姿态运动、SGCMG的框架运动以及环境之间的相互作用.仿真结果说明:基于SGCMG控制的AUV的姿态机动快速、准确,低速性能理想,为操纵律设计及姿态控制算法研究提供基础.  相似文献   

11.
当航天器执行高动态敏捷机动或者姿态动态跟踪控制等任务时,常使用控制力矩陀螺(control moment gyroscope,简称CMG)和飞轮(reaction wheel,简称RW)构成的混合执行机构来提供大力矩。提出了基于力矩输出能力最优化的混合执行机构操纵律,从几何角度出发,给出了力矩输出能力最优的CMG框架角速度和RW角加速度,通过引入参数,并讨论参数的设置的最优,使得框架转速误差和输出力矩误差的混合二次型达到最小,保证了混合执行机构在输出力矩误差最小的情况下,力矩输出能力最优。以金字塔构型的CMG集群和正交的RW集群构成的混合执行机构为例,对基于力矩输出能力最优化的混合执行机构操纵律进行合理化分析,证明了引入参数的作用,并且证明了混合执行机构不存在CMG奇异情况。仿真结果表明,基于力矩输出能力最优化的混合执行机构操纵律解决了CMG奇异的问题并使得RW不陷入饱和,输出力矩误差较小,输出力矩能力强,能够应用于航天器大角度机动任务。  相似文献   

12.
基于非线性观测器的控制力矩陀螺操纵律设计   总被引:2,自引:0,他引:2  
为改善操纵性能,将单框架控制力矩陀螺(SGCMG)操纵律设计问题转化为非线性系统的状态观测问题,并基于状态观测理论,导出了一种新型的SGCMG操纵律.通过适当的参数选择,SGCMG操纵律可使操纵误差在理论上渐近收敛至零;不用计算Jacobi阵的伪逆,而代之以Jacobi阵的转置,从而避免了由Jacobi阵求伪逆带来的一系列问题.同时,该操纵律形式简单,计算量小,易于实现.对应用在航天器上的某SGCMG系统的仿真结果表明,上述操纵律是可行的.   相似文献   

13.
针对故障后仅剩两单框架控制力矩陀螺(SGCMG)可工作的对地定向三轴稳定卫星姿态控制问题进行了研究,提出了2-SGCMGs系统与磁力矩组合的混合控制策略及方法,以克服两SGCMG欠驱动控制的鲁棒性问题.首先,给出2-SGCMGs零动量方式的标称框架角构型选择计算过程.然后,结合标称框架角构型,构造了一种不同于沿传统体轴...  相似文献   

14.
航天器高精度姿态控制容易受到参数误差的影响,自适应控制能够合理地估计参数,使基于模型的控制器设计易于实现。自适应参数分为主星体惯量、变速控制力矩陀螺框架转子惯量及动摩擦系数3组,按参数分组对带变速控制力矩陀螺的航天器详细动力学模型进行变换,采用Lyapunov方法设计出姿态控制器、变速控制力矩陀螺群操纵律及参数自适应更新律,操纵律中引入加权矩阵以缓解陀螺奇异问题。理论分析和数值仿真表明闭环姿态控制系统全局一致最终有界稳定,参数自适应更新能有效减小角速度跟踪误差,使姿态四元数误差收敛更快。参数估计虽然不能准确收敛到其真值上,但均在可接受的范围内。  相似文献   

15.
控制力矩陀螺驱动的空间机器人轨迹跟踪控制   总被引:2,自引:2,他引:0  
提出一种新的空间机器人设计概念,并研究其轨迹跟踪控制问题.系统中的各机械臂以自由球铰连接,在机器人平台和每节机械臂上均安装有一组控制力矩陀螺(CMGs,Control Moment Gyroscopes)作为控制力矩执行机构.采用改进的罗格里得斯参数(MRPs,Modified Rodrigues Parameters)描述平台和各节机械臂的姿态,利用Kane方程建立了系统的动力学模型.在此基础上,用逆动力学方法设计了系统的轨迹跟踪控制律,用以实现卫星平台的位置/姿态和机械臂末端作用器位置的轨迹跟踪控制.采用带有零运动的CMGs操纵律以使CMGs准确输出力矩并回避构型奇异.基于两关节机械臂系统和金字塔构型CMGs的数值仿真结果验证了所设计的控制律和操纵律的有效性,以及自由球铰连接方式在提高末端作用器运动自由度和降低系统动力学耦合方面的优越性.   相似文献   

16.
17.
基于变速控制力矩陀螺群动力学模型建立其复合控制方程和分系统解耦约束方程,用矩阵投影方法同步设计得到航天器姿态与能量一体控制复合操纵律,利用Lyapunov方法分析了转子轴向惯量误差对姿态控制分系统的影响.根据飞轮转子轴向惯量与功率输出之间的误差关系设计出功率控制补偿器.复合操纵律中的力矩和功率两解形式相同,约束方程使得姿态与能量控制两分系统解耦,便于进行考虑执行机构特性的闭环控制系统性能分析.考虑飞轮转子轴向惯量误差时,姿态控制分系统的输出耗散特性使其能够保持稳定,而功率控制分系统输出误差与转子轴向惯量误差成比例关系,经过补偿后功率输出能满足控制要求.  相似文献   

18.
考虑框架伺服特性时SGCMG系统操纵律设计   总被引:2,自引:0,他引:2  
在单框架控制力矩陀螺(SGCMG)系统操纵律的设计中,通常假定框架伺服系统具有理想的伺服跟踪性能.然而,框架伺服系统有限的带宽和实际存在的各种扰动力矩都会使其跟踪性能下降.为抑制SGCMG框架伺服特性对操纵性能的影响,设计了一种新型操纵律.该操纵律综合考虑了SGCMG系统运动学和动力学特性,可以根据航天器姿态控制给出的角动量(或力矩)指令,直接计算出每个SGCMG框架驱动系统所需的控制力矩.由于操纵律没有算法奇异,在SGCMG系统不出现运动奇异的情况下,可使操纵误差指数收敛至零.同时,操纵律形式简单,易于实现.应用在航天器上的某4-SGCMG系统的仿真结果表明,上述操纵律是可行的.   相似文献   

19.
由于姿态与轨道运动的耦合,以及制导系统确定的发动机推力矢量方向不通过系统质心所引起的干扰力矩,火箭上面级轨道转移段的姿态运动会受到很大的干扰,为此,研究了利用轨控矢量发动机主动摇摆和滚转姿控发动机喷气的上面级姿态控制技术。首先,利用凯恩方程建立包括上面级本体、发动机旋转支架以及矢量发动机的系统多体动力学方程,推导了矢量发动机工作时偏心引起的干扰力矩和推力矢量控制中矢量发动机的摆角计算公式,利用矢量发动机主动摇摆和滚转姿控发动机喷气控制上面级的姿态。其次,基于变结构控制方法,设计了上面级轨道转移段的姿态控制律,使得上面级轨道转移期间姿态控制的精度达到了10-3级别,且矢量发动机推力矢量既为制导指令方向又通过系统质心,减小了矢量发动机对上面级的干扰力矩。最后,进行了数值仿真,仿真算例结果验证了控制律的可行性。  相似文献   

20.
为实现控制力矩陀螺框架伺服系统的高精度周期随动控制,采用比例积分微分(PID,Proportion Integration Differentiation)控制器结合重复控制器的控制方式,PID控制器实现框架伺服系统静态和匀速运动的高精度控制,插入式重复控制器实现对周期性输入信号的精确跟踪.对控制力矩陀螺框架系统进行了建模,设计了PID控制器与插入式重复控制器,并分析了重复控制器的稳定性条件、稳态跟踪性能和对扰动的抑制能力.仿真结果和实验结果表明:采用插入式重复控制器使控制力矩陀螺跟踪1Hz给定速度信号时的稳态跟踪误差大幅减少.PID控制器结合插入式重复控制器结构简单,两者可分开独立设计,参数设计容易.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号