首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh–Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.  相似文献   

2.
Advanced space-borne thermal emission and reflection radiometer (ASTER) data were evaluated for the hydrothermal alteration mapping of the Nimu porphyry copper deposit, southern Tibet. According to the metallogenic model for porphyry copper, we chose hydrothermal alteration mineral association and then established a remote sensing model. Relative absorption-band depth (RBD) and simple band combination methods in visible near infrared (VNIR) and shortwave infrared (SWIR) bands were used to retrieve information about lithological distributions. Principal component analyses (PCA) were applied to extract the prospecting information based on the spectral information of argillization mineral association, propylitization mineral association, and iron stained (limonite) effects. Results of the study match up well with known copper occurrences and a circular structure in study area, while circular structures usually have close relationship with mineralization. Combined with field validation, ASTER data are proved able to characterise the alteration zone of these porphyry deposits. With VNIR and SWIR bands, argillic, propylitic and ferritization alterations in a single deposit can be effectively discriminated.  相似文献   

3.
The use of satellite images for mineral exploration has been very successful in pointing out the presence of minerals such as smectite and kaolinite which are important in the identification of hydrothermal alterations. Shortwave infrared (SWIR) bands from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength of ASTER SWIR bands between 1.65 and 2.43 μm has a good potential for mapping a hydrothermal alteration minerals such as alunite, pyrophyllite, kaolinite, illite–muscovite–sericite, and carbonate. In this range, hydroxide minerals which have been produced by hydrothermal alteration exhibit good absorption compared to shorter or longer wavelengths. In this research which aims to remove atmospheric and topographic effects from ASTER SWIR data, the authors used the log-residual method (LRM) with the minimum noise fraction (MNF) transformation to create a pixel purity index (PPI) which was used to extract the most spectrally pure pixels from multispectral images. Spectral analyses of the clay mineralogy of the study area (east Zanjan, in northern Iran) were obtained by matching the unknown spectra of the purest pixels to the U.S. Geological Survey (USGS) mineral library. Three methods, spectral feature fitting (SFF), spectral angle mapping (SAM), and binary encoding (BE) were used to generate a score between 0 and 1, where a value of 1 indicates a perfect match showing the exact mineral type. In this way, it was possible to identify certain mineral classes, including chlorite, carbonate, calcite–dolomite–magnesite, kaolinite–smectite, alunite, and illite. In this research, two main propylitic and phyllic–argillic zones could be separated using their compositions of these minerals. These two alteration zones are important for porphyry copper deposits and gold mineralization in this part of Iran.  相似文献   

4.
The Rodalquilar epithermal quartz-alunite gold deposits that occur within the Rodalquilar caldera complex in southeast Spain, are associated with a pronounced hydrothermal alteration of the country rocks. The hydrothermal alteration zones that are exposed on the surface consist of the vuggy silica zone, the advanced argillic alteration zone, the intermediate argillic alteration zone, the propylitic alteration zone, and a second stage supergene acid sulfate alteration. High spatial resolution multispectral imagery recorded by the WorldView-3 satellite was used in this study to map the spatial distribution of the main alteration minerals in the Rodalquilar caldera complex. Thermal infrared (TIR) data of the ASTER satellite were used to detect the quartz-rich zones. The analysis of the Rodalquilar WorldView-3 data was based on the Adaptive Coherence Estimator (ACE), a partial unmixing algorithm. The ACE processing accurately mapped the spatial distribution of alunite, kaolinite, illite and goethite. Alunite is abundant in the vuggy silica and advanced argillic alteration zones, and in the second stage supergene acid sulfate alteration. Kaolinite is predominant in the intermediate argillic alteration zone. Illite is abundant in the outer parts of the intermediate argillic alteration zone. Goethite image maps gossans that mainly occur in the vuggy silica and advanced argillic alteration zones, and in the areas characterized by the second stage supergene acid sulfate alteration. The detection of quartz-rich zones from the ASTER TIR data complemented the WorldView-3 mapping results. The study shows the efficiency of high spatial resolution multispectral remote sensing imagery recorded by the WorldView-3 satellite for district-level mineral exploration studies.  相似文献   

5.
A multiscale approach to hyperspectral image data analysis using fractal signatures was proposed and implemented in the Interactive Data Language (IDL). For 2-D hyperspectral curves, fractal signature measures the changes in curve length with changing scale. Using NASA’s Earth Observing-1 (EO-1) Hyperion image from a study area near Denton, Texas, USA, the capabilities of fractal signatures in discriminating different land cover types were presented in three different ways: (1) fractal signature curves, (2) distances between fractal signatures, and (3) fractal signature images. The asymmetry in length measurement was found to be effective in handling hyperspectral curves obtained from Hyperion radiance data. The contribution of fractal signature images was shown through comparison of image classification results. The results from the Hyperion radiance data suggest that fractal signatures at certain scales can reveal important differences in land cover types.  相似文献   

6.
Reflectance spectra in the visible and near-infrared wavelengths provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition. Hydrocarbon microseepage theory establishes a cause-and-effect relation between oil and gas reservoirs and some special surface anomalies, which mainly include surface hydrocarbon microseepage and related alterations. Therefore, we can explore for oil, gas by determining reflectance spectra of surface anomalies. This idea has been applied to the R&D project of exploring for natural gas in Qinghai province of China using NASA EO-1 satellite with the Hyperion sensor (June 2005 to June 2006). In this project, in order to improve the accuracy of exploration targets of natural gas mapped in the field studied, an integrated practical system of exploration of oil and gas was built by the analysis of not only hyperspectral remote sensing data but also data provided from field work. In this paper, our efforts were focused on the analysis of the 799 reflectance spectra provided from the field work. In order to properly define the typical form of hydrocarbon microseepage with spectroscopy and fulfill the data analysis, it was necessary to build a spectral model. In this spectral model the most important features of hydrocarbon microseepage in the surface of our study area, i.e., diagnostic spectral macroscopic features and diagnostic spectral absorption features, were proposed and extracted, respectively. The distribution of coexisting anomalies, which results from both alteration minerals and hydrocarbons, is estimated by the diagnostic macroscopic features mainly using Spectral Angle Mapper (SAM) classifier. On the other hand, the diagnostic absorption features of two main absorption bands presented abundant local information, based on deep analysis of which, we are able to map the anomalies of alteration minerals and hydrocarbons, respectively. Additionally, a general framework of analysis and key classification algorithms applied to the Hyperion data have been introduced briefly. In our work, three exploration targets of natural gas were identified from the study area which covers 2100 km2. In the three exploration targets, three wildcats have been drilled by China National Petroleum Corporation (CNPC) since July 2006, and all the three wells have been proven some industrial reserves.  相似文献   

7.
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red–Green–Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.  相似文献   

8.
Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates.  相似文献   

9.
The NOAA satellite system comprises the polar-orbiting satellites which provide image data twice a day, and the geostationary satellites, which provide image data every 30 minutes. Data is provided in the visible, near infrared, and middle and far thermal infrared at 1 km resolution from the polar-orbiting satellites and in the visible at 1-km resolution and in the far thermal infrared at 8 km resolution from the geostationary satellites. Applications described include monitoring tectonic lineaments in Alaska, monitoring the Greenland Ice Sheet, mapping geomorphology in the Dakotas and monitoring volcano eruptions. Applications of the Heat Capacity Mapping Mission described include discriminating rock types and indications of mineral deposits. Current research into Land Sciences Applications are discussed and recommendations made for further areas of research.  相似文献   

10.
Landsat-4 Thematic Mapper (TM) data recorded over an arid terrain were analyzed to determine the applicability of using of TM data for identifying and mapping hydrothermally altered, potentially mineralized rocks. Clays, micas, and other minerals bearing the OH anion in specific crystal lattice positions have absorption bands in the 2.2-μm region (TM channel 7, TM7) and commonly lack features in the 1.6-μm region (TM5). Channel ratios TM5/TM7, TM5/TM4, and TM3/TM1 were combined into a color-ratio-composite (CRC) image and used to distinguish hydrothermally altered rocks, unaltered rocks, and vegetation. These distinctions are made possible by using the TM5 and TM7, channels which are not available in the Landsat multispectral scanner (MSS). Digital masking was used to eliminate ambiguities due to water and shadows. However, some ambiguities in identification resulted between altered volcanic rocks and unaltered sedimentary deposits that contained clays, carbonates, and gypsum, and between altered volcanic rocks and volcanic tuffs diagenetically altered to zeolites. However, compared to MSS data, TM data should greatly improve the ability to map hydrothermally altered rocks in arid terrains.  相似文献   

11.
Visible and near-infrared reflectance spectroscopy has proven a powerful tool for exploring the geology of Mars. Most of this data has been obtained from Earth, but the technique is ideally suited to orbital application, as proposed for the U.S. Mars Geoscience/Climatology Orbiter mission. Spectral reflectance in the near-UV and visible is highly diagnostic of ferric-iron mineralogy, and has shown that Fe3+ in the ubiquitous bright dust and soil is amorphous or poorly-crystalline. Other iron-oxide minerals, indicative of other modes or episodes of crustal alteration, may be found in spatially localized deposits. Clay minerals (hydroxylated silicates) have diagnostic vibrational absorptions throughout the near-infrared. While some form of bound water and/or OH has been known on Mars for many years, a new result presented here is the identification of structural OH in a dilute or poorly crystalline magnesian clay. Salts such as carbonates, sulfates, and nitrates have not yet been detected in martian soils but have diagnostic spectral features in the 3- to 4-μm region, best suited to Mars-orbital observation. Analysis of reflectance spectra of low-albedo regions is a primary source of evidence for a basaltic or ultramafic crust, with identification of abundant clinopyroxene and possible detection of other mafic minerals. The distinctive near-infrared spectral shape of dark regions indicates that the dark materials commonly consist of relatively unaltered rocks or rock fragments very thinly coated by (or mixed with) bright oxidized material similar to the global dust. Visible and near-infrared reflectance spectroscopy is also a sensitive technique for detecting and analyzing water ice, as has been demonstrated on Mars by observations of the north polar cap.  相似文献   

12.
The Sanandaj-Sirjan Zone (SSZ) is considered as an important region for gold exploration in the western sector of Iran. Its mountainous topography and unpaved routes make its study challenging for researchers and raise the costs for mining companies strating new exploration plans. Gold mineralization mainly occurs as irregular to lenticular sulfide-bearing quartz veins along shear zones in deformed mafic to intermediate metavolcanic and metasedimentary rocks. In this investigation, ASTER data are used for mapping hydrothermal alteration minerals and to better discriminate geological structural features associated with orogenic gold occurrences in the area. Image transformation techniques such as specialized band ratioing and Principal Component Analysis are used to delineate lithological units and alteration minerals. Supervised classification techniques, namely Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) are applied to detect subtle differences between indicator alteration minerals associated with ground-truth gold locations in the area. The directional filtering technique is applied to help in tracing along the strike the different linear structures. Results demonstrate that the integration of image transformation techniques and supervised classification of ASTER data with fieldwork and geochemical exploration studies has a great efficiency in targeting new prospects of gold mineralization in the SSZ. The approach used in this research provides a fast, cost-efficient means to start a comprehensive geological and geochemical exploration programs in the study area and elsewhere in similar regions.  相似文献   

13.
This research focuses on the application of HyMap airborne hyperspectral data and ASTER satellite multispectral data to mineral exploration and lithologic mapping in the Arctic regions of central East Greenland. The study area is the Kap Simpson complex in central East Greenland. The Kap Simpson complex is one of the largest exposed Palaeogene felsic complexes of East Greenland. It has been the target of several mineral exploration projects. The analysis of the HyMap data produced a detailed picture of the spatial distribution of the alteration minerals in the Kap Simpson complex, unavailable from field-based studies in the area. The analysis of the ASTER data produced mineral maps which due to the moderate spatial and spectral resolution of the ASTER imagery can be useful for reconnaissance level mineral exploration. Colour composites of the mean normalized ASTER thermal bands display lithological information and detected a large felsic igneous intrusion that has not been shown on the recently compiled geological maps of the area. The results of this research have considerable potential to evaluate the use of hyperspectral and multispectral remote sensing for geological purposes in the Arctic regions of central East Greenland.  相似文献   

14.
The present study aims to evaluate the field-based approach for the classification of landcover using high-resolution SAR data. TerraSAR-X (TSX) strip mode imagery, coupled with digital ortho-photos (DOPs) with 20 cm spatial resolution was used for landcover classification and parcel mapping respectively. Different filtering and analysis techniques were applied to extract textural information from the TSX image in order to assess the enhancement of the classification accuracy. Several attributes of parcels were derived from the available TSX images in order to define the most suitable parameters discriminating between different landcover types. Then, these attributes were further statistically analysed in order to define separability and thresholds between different landcover types. The results showed that textural analysis resulted in high classification accuracy. Hence, this paper confirms that integrated landcover classification using the textural information of TerraSAR-X has a high potential for landcover mapping.  相似文献   

15.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Phased Array L-band Synthetic Aperture Radar (PALSAR) images covering the Um Rus area in the Central Eastern Desert of Egypt were evaluated for mapping geologic structure, lithology, and gold-related alteration zones. The study area is covered by Pan-African basement rocks including gabbro and granodiorite intruded into a variable mixture of metavolcanics and metasediments. The first three principal component analyses (PCA1, PCA2, PCA3) in a Red-Green-Blue (RGB) of the visible through shortwave-infrared (VNIR + SWIR) ASTER bands enabled the discrimination between lithological units. The results show that ASTER band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB identifies the lithological units and discriminates the granodiorite very well from the adjacent rock units.The granodiorites are dissected by gold-bearing quartz veins surrounded by alteration zones. The microscopic examination of samples collected from the alteration zones shows sericitic and argillic alteration zones. The Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification methods were applied using the reference spectra of the USGS spectral library. The results show that these classification methods are capable of mapping the alteration zones as indicated by field verification work. The PALSAR image was enhanced for fracture mapping using the second moment co-occurrence filter. Overlying extracted faults and alteration zone classification images show that the N30E and N-S fractures represent potential zones for gold exploration. It is concluded that the proposed methods can be used as a powerful tool for ore deposit exploration.  相似文献   

16.
Prolonged exposure of the microscopic outer layer of the lunar surface to the space environment leads to the maturation of the surface. Maturation can be quantified and it may be expressed in terms of optical maturity (OMAT). Optical maturity estimations are very much helpful in the identification and mapping of the major minerals present on the lunar regolith. Estimation of the maturation and mineral mapping using remote sensing techniques are achieved, by coupling spectral reflectance of the lunar surface with an optimized origin. The present work estimates the optical maturity and Ferrous oxide content of the Goldschmidt and Schrodinger craters, through the recalibration of the classical method of Lucey et al. (2000a) with an origin of (0.08, 1.18) and Moon Mineralogy Mapper (M3) data. The overall recalibration results assure that the craters are highly matured.  相似文献   

17.
The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1–D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.  相似文献   

18.
针对地形起伏对高光谱遥感图像几何变形和辐射变化的影响,建立高光谱遥感地形影响模型.该模型利用传感器位置、姿态和视场角建立模拟图像像元坐标和地面空间坐标之间的成像几何关系,利用地表反射率、数字高程模型等数据,考虑大气辐射传输过程,计算起伏地形下传感器入瞳辐亮度图像,并经过空间分辨率转换,生成最终遥感模拟图像,实现高光谱遥感地形影响精确建模.利用西藏驱龙地区Hyperion数据和其它相关数据进行仿真分析,将模拟图像和原始图像进行对比,结果比较吻合,表明该模型具有较好的模拟效果.  相似文献   

19.
Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 μm. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands.A color-composite image was constructed using the following spectral band ratios: 1.6μm/2.2μm, 1.6μm/0.48μm, and 0.67μm/1.0μm. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks.A color-coded density slice image of the 1.6μm/2.2μm band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-μm absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body.  相似文献   

20.
Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies.Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号