首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

2.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

3.
The height, hmF2, and the electron density, NmF2, of the F2 peak are key model parameters to characterize the actual state of the ionosphere. These parameters, or alternatively the propagation factor, M3000F2, and the critical frequency, foF2, of the F2 peak, which are related to hmF2 and NmF2, are used to anchor the electron density vertical profile computed with different models such as the International Reference Ionosphere ( Bilitza, 2002), as well as for radio propagation forecast purposes. Long time series of these parameters only exist in an inhomogeneous distribution of points over the surface of Earth, where dedicated instruments (typically ionosondes) have been working for many years. A commonly used procedure for representing median values of the aforementioned parameters all over the globe is the one recommended by the ITU-R ( ITU-R, 1997). This procedure, known as the Jones and Gallet mapping technique, was based on ionosondes measurements gathered from 1954 to 1958 by a global network of around 150 ionospheric stations (  and ). Even though several decades have passed since the development of that innovative work, only few efforts have been dedicated to establish a new mapping technique for computing hmF2 and NmF2 median values at global scale or to improve the old method using the increased observational database. Therefore, in this work three different procedures to describe the daily and global behavior of the height of the F2 peak are presented. All of them represent a different and simplified method to estimate hmF2 and are based on different mathematical expressions. The advantages and disadvantages of these three techniques are analyzed, leading to the conclusion that the recommended procedure to represent hmF2 is best characterized by a Spherical Harmonics expansion of degree and order equal to 15, since the differences between the hmF2 values obtained with the Jones and Gallet technique and those obtained using the abovementioned procedure are of only 1%.  相似文献   

4.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

5.
A numerical model of the peak height of the F2 layer, hmF2_top, is derived from the topside sounding database of 90,000 electron density profiles for a representative set of conditions provided by ISIS1, ISIS2, IK19 and Cosmos-1809 satellites for the period of 1969–1987. The model of regular hmF2 variations is produced in terms of local time, season, geomagnetic latitude, geodetic longitude and solar radio flux. No geomagnetic activity trends were discernible in the topside sounding data. The nighttime peak of hmF2_top evident for mid-latitudes disappears near the geomagnetic equator where a maximum of hmF2_top occurs at sunset hours when it can exceed 500 km at solar maximum. The hmF2 given by the IRI exceeds hmF2_top at the low solar activities. The hmF2_top, obtained by extrapolation of the first derivative of the topside profile to zero shows saturation similar to foF2 the greater the solar activity. The proposed model differs from hmF2 given by IRI based on M(3000)F2 to hmF2 conversion by empirical relationships in terms of foF2, foE and R12 with these quantities mapped globally by the ITU-R (former CCIR) from ground-based ionosonde data. The differences can be attributed to the different techniques of the peak height derivation, different epochs and different global distribution of the source data as well as the different mathematical functions involved in the maps and the model presentation.  相似文献   

6.
Neural networks (NNs) have been applied to ionospheric predictions recently. This paper uses radial basis function neural network (RBF-NN) to forecast hourly values of the ionospheric F2 layer critical frequency(foF2), over Wuhan (30.5N, 114.3E), China. The false nearest neighbor method is used to determine the embedding dimension, and the principal component analysis (PCA) is used to reduce noise and dimension. The whole study is based on a sample of about 26,000 observations of foF2 with 1-h time resolution, derived during the period from January 1981 to December 1983. The performance of RBF-NN is estimated by calculating the normalized root-mean-squared (NRMSE) error, and its results show that short-term predictions of foF2 are improved.  相似文献   

7.
This work is a continuation of the previous article and it focuses on low solar activity and modeling effort. NeQuick model uses Epstein layer formalism to model each part of the profile. We study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick2) and R (B2best/B2NeQuick 2) at Hainan station during low solar activity. The results show it is possible to improve the B2bot parameter of the NeQuick model at that region during low solar activity. Then, we use a function ?(t) with LT in different seasons to correct the B2bot formula of NeQuick 2. The correction shows that (1) By the correction formula, the B2bot of NeQuick is improved. The maximum standard deviation is improved for 9 km. (2) The correction formula is more effective in summer than in equinox and winter and performs better during early morning hours than during the rest of the day.  相似文献   

8.
Nighttime thermospheric meridional winds aligned to the magnetic meridian have been inferred using hF and hpF2 ionosonde data taken from two equatorial stations, Manaus (2.9°S, 60.0°W, dip latitude 6.0°N) and Palmas (10.17°S, 48.2°W, dip latitude 6.2°S), and one low-latitude station, Sao Jose dos Campos (23.21°S, 45.86°W, dip latitude 17.26°S), during geomagnetic quiet days of August and September, 2002. Using an extension of the ionospheric servo model and a simple formulation of the diffusive vertical drift velocity, the magnetic meridional component of the thermospheric neutral winds is inferred, respectively, at the peak (hpF2) and at the base (hF) heights of the F region over Sao Jose dos Campos. An approach has been included in the models to derive the effects of the electrodynamic drift over Sao Jose dos Campos from the time derivative of hpF2 and hF observed at the equatorial stations. The magnetic meridional winds inferred from the two methods, for the months of August and September, are compared with winds calculated using the HWM-90 model and with measurements from Fabry–Perot technique. The results show varying agreements and disagreements. Meridional winds calculated from hpF2 ionospheric data (servo model) may produce errors of about 59 m/s, whereas the method calculated from the F-region base height (hF) ionospheric data gives errors of about 69 m/s during the occurrence of equatorial spread-F.  相似文献   

9.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

10.
This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.  相似文献   

11.
Though H2CO, H2CS, H2CCC, H2CCCC, H2CCO have been identified in cool interstellar molecular clouds, identification of H2CC is still awaited. To analyze its spectrum, collisional rate coefficients are required. We have calculated collisional rate coefficients for rotational transitions between 23 levels of ortho and para H2CC for kinetic temperatures 10, 20, 30, 40, and 50 K. The scattering problem is analyzed using the computer code MOLSCAT where the colliding partner is He atom. The interaction between H2CC and He has been calculated with GAUSSIAN 2003. For the interaction potential obtained with GAUSSIAN 2003, MOLSCAT is used to derive the parameters q(L,M,M|E)q(L,M,M|E) as a function of energy E   of the colliding partner. After averaging the parameters q(L,M,M|E)q(L,M,M|E) over a Maxwellian distribution, the parameters Q(L,M,M|T)Q(L,M,M|T) as a function of the kinetic temperature T in the cloud are obtained. Finally, the collisional rate coefficients have been calculated.  相似文献   

12.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   

13.
This paper describes the three-dimensional (3-D) electron density mapping of the ionosphere given as output by the assimilative IRI-SIRMUP-P (ISP) model for three different geomagnetic storms. Results of the 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at two testing ionospheric stations: Roquetes (40.8°N, 0.5°E), Spain, and San Vito (40.6°N, 17.8°E), Italy. The reference ionospheric stations from which the autoscaled foF2 and M(3000)F2 data as well as the real-time vertical electron density profiles are assimilated by the ISP model are those of El Arenosillo (37.1°N, 353.3°E), Spain, Rome (41.8°N, 12.5°E), and Gibilmanna (37.9°N, 14.0°E), Italy. Overall, the representation of the ionosphere made by the ISP model is better than the climatological representation made by only the IRI-URSI and the IRI-CCIR models. However, there are few cases for which the assimilation of the autoscaled data from the reference stations causes either a strong underestimation or a strong overestimation of the real conditions of the ionosphere, which is in these cases better represented by only the IRI-URSI model. This ISP misrepresentation is mainly due to the fact that the reference ionospheric stations covering the region mapped by the model turn out to be few, especially for disturbed periods when the ionosphere is very variable both in time and in space and hence a larger number of stations would be required. The inclusion of new additional reference ionospheric stations could surely smooth out this concern.  相似文献   

14.
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.  相似文献   

15.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   

16.
Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol−1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.  相似文献   

17.
In higher plants, gravity is a major environmental cue that governs growth orientation, a phenomenon termed gravitropism. It has been suggested that gravity also affects other aspects of morphogenesis, such as circumnutation and winding movements. Previously, we showed that these aspects of plant growth morphology require amyloplast sedimentation inside gravisensing endodermal cells. However, the molecular mechanism of the graviresponse and its relationship to circumnutation and winding remains obscure. Here, we have characterized a novel shoot gravitropic mutant of morning glory, weeping2 (we2). In the we2 mutant, the gravitropic response of the stem was absent, and hypocotyls exhibited a severely reduced gravitropic response, whereas roots showed normal gravitropism. In agreement with our previous studies, we found that we2 mutant has defects in shoot circumnutation and winding. Histological analysis showed that we2 mutant forms abnormal endodermal cells. We identified a mutation in the morning glory homolog of SHORT-ROOT (PnSHR1) that was genetically linked to the agravitropic phenotype of we2 mutant, and which may underlie the abnormal differentiation of endodermal cells in this plant. These results suggest that the phenotype of we2 mutant is due to a mutation of PnSHR1, and that PnSHR1 regulates gravimorphogenesis, including circumnutation and winding movements, in morning glory.  相似文献   

18.
It is the primary task for a bioregenerative life support system (BLSS) to maintain the stable concentrations of CO2 and O2. However, these concentrations could fluctuate based on various factors, such as the imbalance between respiration/assimilation quotients of the heterotrophic and autotrophic components. They can even be out of balance through catastrophic failure of higher plants in the emergency conditions. In this study, the feasibility of using unicellular Chlorella vulgaris of typically rapid growth as both “compensatory system” and “regulator” to control the balance of CO2 and O2 was analyzed in a closed ecosystem. For this purpose, a small closed ecosystem called integrative experimental system (IES) was established in our laboratory where we have been conducting multi-biological life support system experiments (MLSSE). The IES consists of a closed integrative cultivating system (CICS) and a plate photo-bioreactor. Four volunteers participated in the study for gas exchange by periodical breathing through a tube connected with the CICS. The plate photo-bioreactor was used to cultivate C. vulgaris. Results showed that the culture of C. vulgaris could be used in a situation of catastrophic failure of higher plant under the emergencies. And the productivity could recover itself to the original state in 3 to 5 days to protect the system till the higher plant was renewed. Besides, C. vulgaris could grow well and the productivity could be affected by the light intensity which could help to keep the balance of CO2 and O2 in the IES efficiently. Thus, C. vulgaris could be included in the design of a BLSS as a “compensatory system” in the emergency contingency and a “regulator” during the normal maintenance.  相似文献   

19.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   

20.
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805–0.0831 L kg−1 h−1 and the level of CO2 emission was 0.0705–0.0736 L kg−1 h−1; O2 consumption by the two trial volunteers was 19.71 L h−1 and the volume of respiration-released CO2 was 18.90 L h−1. Under 7000–8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号