首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a numerical investigation of the coupled gravitational and non-gravitational perturbations acting on Earth satellite orbits in an extensive grid, covering the whole circumterrestrial space, using an appropriately modified version of the SWIFT symplectic integrator, which is suitable for long-term (120?years) integrations of the non-averaged equations of motion. Hence, we characterize the long-term dynamics and the phase-space structure of the Earth-orbiter environment, starting from low altitudes (400?km) and going up to the GEO region and beyond. This investigation was done in the framework of the EC-funded “ReDSHIFT” project, with the purpose of enabling the definition of passive debris removal strategies, based on the use of physical mechanisms inherent in the complex dynamics of the problem (i.e., resonances). Accordingly, the complicated interactions among resonances, generated by different perturbing forces (i.e., lunisolar gravity, solar radiation pressure, tesseral harmonics in the geopotential) are accurately depicted in our results, where we can identify the regions of phase space where the motion is regular and long-term stable and regions for which eccentricity growth and even instability due to chaotic behavior can emerge. The results are presented in an “atlas” of dynamical stability maps for different orbital zones, with a particular focus on the (drag-free) range of semimajor axes, where the perturbing effects of the Earth’s oblateness and lunisolar gravity are of comparable order. In some regions, the overlapping of the predominant lunisolar secular and semi-secular resonances furnish a number of interesting disposal hatches at moderate to low eccentricity orbits. All computations were repeated for an increased area-to-mass ratio, simulating the case of a satellite equipped with an on-board, area-augmenting device. We find that this would generally promote the deorbiting process, particularly at the transition region between LEO and MEO. Although direct reentry from very low eccentricities is very unlikely in most cases of interest, we find that a modest “delta-v” (ΔV) budget would be enough for satellites to be steered into a relatively short-lived resonance and achieve reentry into the Earth’s atmosphere within reasonable timescales (50?years).  相似文献   

2.
The Medium Earth Orbit (MEO) region hosts satellites for navigation, communication, and geodetic/space environmental science, among which are the Global Navigation Satellites Systems (GNSS). Safe and efficient removal of debris from MEO is problematic due to the high cost for maneuvers needed to directly reach the Earth (reentry orbits) and the relatively crowded GNSS neighborhood (graveyard orbits). Recent studies have highlighted the complicated secular dynamics in the MEO region, but also the possibility of exploiting these dynamics, for designing removal strategies. In this paper, we present our numerical exploration of the long-term dynamics in MEO, performed with the purpose of unveiling the set of reentry and graveyard solutions that could be reached with maneuvers of reasonable ΔV cost. We simulated the dynamics over 120–200?years for an extended grid of millions of fictitious MEO satellites that covered all inclinations from 0 to 90°, using non-averaged equations of motion and a suitable dynamical model that accounted for the principal geopotential terms, 3rd-body perturbations and solar radiation pressure (SRP). We found a sizeable set of usable solutions with reentry times that exceed 40 years, mainly around three specific inclination values: 46°, 56°, and 68°; a result compatible with our understanding of MEO secular dynamics. For ΔV?300 m/s (i.e., achieved if you start from a typical GNSS orbit and target a disposal orbit with e<0.3), reentry times from GNSS altitudes exceed 70 years, while low-cost (ΔV?535 m/s) graveyard orbits, stable for at lest 200?years, are found for eccentricities up to e0.018. This investigation was carried out in the framework of the EC-funded “ReDSHIFT” project.  相似文献   

3.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   

4.
This paper presents the results of a numerical evaluation of the natural lifetime reduction in low Earth orbit, due to dynamical perturbations. The study considers two values for the area-to-mass ratio, a nominal ratio which resembles a typical value of spacecraft in orbit today, and an enhanced ratio which covers the surface augmentation. The results were obtained with two orbit propagators, one of a semi-analytical nature and the second one using non-averaged equations of motion. The simulations for both propagators were set up similarly to allow comparison. They both use the solar radiation pressure and the secular terms of the geopotential (J2,J4 and J6). The atmospheric drag was turned on and off in both propagators to alternatively study the eccentricity build up and the residual lifetime. The non-averaging case also covers a validation with the full 6?×?6 geopotential. The results confirm the findings in previous publications, that is, the possibility for de-orbiting from altitudes above the residual atmosphere if a solar sail is deployed at the end-of-life, due to the combined effect of solar radiation pressure and the oblateness of the Earth. At near polar inclinations, shadowing effects can be exploited to the same end. The results obtained with the full, non-averaging propagator revealed additional de-orbiting corridors associated with solar radiation pressure which were not found by previous work on space debris mitigation. The results of both tools are compared for specific initial conditions. For nominal values of area-to-mass ratio, instead, it is confirmed that this resonance effect is negligible.The paper then puts the findings in the perspective of the current satellite catalogue. It identifies space missions which are currently close to a resonance corridor and shows the orbit evolution within the resonances with a significantly shorter residual orbital lifetime. The paper finishes with a discussion on the exploitation of these effects with regards to the long-term simulation of the space debris environment and a flux and collision probability comparison.  相似文献   

5.
Based on the orbital resonance model, we study the two-dimensional phase plane structure of the motion of space debris orbiting the geosynchronous ring under the combined effects of the tesseral harmonics J22, J31 and J33 of the Earth’s gravitational field. We present the main characteristic parameters of the two-dimensional phase plane structure. We also analyze the stability of the two-dimensional phase plane structure with numerical method. Our main findings indicate that the combined effects of the tesseral harmonics J22, J31 and J33 fully determine the two-dimensional phase plane structure of the space debris, and it remains robust under the effect of the Earth’s actual gravitational field, the luni-solar perturbations and the solar radiation pressure with the normal area-to-mass ratios.  相似文献   

6.
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites.  相似文献   

7.
分析了较高轨道(a > 10000km)大面质比空间碎片的轨道动力学演化问题. 重点讨论了位于地球同步轨道的空间碎片轨道演化问题, 并给出轨道偏心率 随时间演化的表达式. 通过进一步分析得出, 倾角大于63°26'的GTO轨 道空间碎片, 仅在J2和第三体摄动影响下, 会出现轨道偏心率升高; 而对 于大面质比空间碎片, 在J2项和太阳光压同时作用下, 当近地点指向的角 变率与太阳平黄经变化率接近时, 会出现长期共振现象, 导致轨道偏心率升 高, 近地点降低. 分析还得出, 轨道演化过程中, 偏心率的最大值与初始轨 道近地点的指向有关.  相似文献   

8.
9.
    
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   

10.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

11.
For special demands, some notable orbit types have been developed by human, including the Molniya orbits, which have a relatively high eccentricity up to about 0.7, and a period of 12 h. Considering that space debris with high area-to-mass ratio (A/M) has been discovered, such objects may also exist in Molniya orbits due to spacecraft and upper stages fragmentation events. However, there are not sufficient studies of the complex dynamical phenomena of such orbits. These studies can enrich the knowledge about the long-term evolution of these orbits, be helpful to propose uncatalogued objects observation and identification, and also set the protected region as well as active debris removal. In this paper, the characteristics of 2:1 resonance of Molniya satellite orbits are studied. A large set of numerical simulations, including all the relevant perturbations, is carried out to further investigate the main characteristics, and special attention is payed to the dynamical evolution of objects with high A/M, particularly affected by the direct solar radiation pressure. The long-term dynamical evolution of orbital elements, as well as the dependency of lifetime on the A/M value, is discussed.  相似文献   

12.
In this paper we provide an extensive analysis of the global dynamics of high-area-to-mass ratios geosynchronous (GEO) space debris, applying a recent technique developed by Cincotta and Simó [Cincotta, P.M., Simó, C.Simple tools to study global dynamics in non-axisymmetric galactic potentials–I. Astron. Astrophys. (147), 205–228, 2000.], Mean Exponential Growth factor of Nearby Orbits (MEGNO), which provides an efficient tool to investigate both regular and chaotic components of the phase space.  相似文献   

13.
A new population of uncatalogued objects in geosynchronous Earth orbits (GEO), with a mean motion of about 1 rev/day and eccentricities up to 0.6, has been identified recently. The first observations of this new type of objects were acquired in the framework of the European Space Agency’s (ESA) search for space debris in GEO and the geostationary transfer orbit (GTO) using the ESA 1-m telescope on Tenerife. Earlier studies have postulated that the perturbations due to the solar radiation pressure can lead to such large eccentricities for GEO objects with a high area-to-mass ratio (A/M). The simulations showed that the eccentricities of GEO objects with large A/M exhibit periodic variations with periods of about one year and amplitudes depending on the value of A/M. The findings of these studies could be confirmed by observations from the ESA 1-m telescope on Tenerife.  相似文献   

14.
    
Geostationary orbit (GEO) is the most commercially valuable Earth orbit. The Inter-Agency Space Debris Coordination Committee (IADC) has produced guidelines to help protect this region from space debris. The guidelines propose moving a satellite at the end of its operational life to a disposal orbit, which is designed so that satellites left there will not infringe the operational GEO region within a period of at least 100 yr.  相似文献   

15.
This paper investigates the long-term perturbations of the orbits of geosynchronous space debris influenced by direct radiation pressure including the Earth’s shadowing effects. For this purpose, we propose an extension of our homemade semi-analytical theory [Valk, S., Lemaître, A., Deleflie, F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res., submitted for publication], based on the method developed by Aksnes [Aksnes, K. Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. Dyn. Astron. 13, 89–104, 1976] and generalized into a more convenient non-singular formalism. The perturbations accounting for the direct radiation pressure with the Earth’s shadow are computed on a revolution-by-revolution basis, retaining the original osculating Hamiltonian disturbing function. In this framework, we compute the non-singular mean longitude at shadow entry and shadow exit at every orbital revolution in opposition to classical approaches where the singular eccentric anomalies at shadow entry and shadow exit are computed. This new algorithm is developed using non-singular variables. Consequently, it is particularly suitable for both near-circular and near-equatorial orbits as well as orbits which transit periodically around null eccentricities and null inclinations.The algorithm is tested by means of numerical integrations of the equations, averaged over the short periods, including radiation pressure, J2, the combined Moon and Sun third body attraction as well as the long-term effects of the 1:1 resonance occurring for geosynchronous objects. As an extension of [Valk, S., Lemaître, A., Anselmo, L. Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios influenced by solar radiation pressure. Adv. Space Res., doi:10.1016/j.asr.2007.10.025, 2007b], we especially apply our analysis to space debris with area-to-mass as high as 20 m2/kg. This paper provides numerical and semi-analytical investigations leading to a deep understanding of the long-term evolution of the semi-major axis. Finally, these semi-analytical investigations are compared with accurate numerical integrations of the osculating equations of motion over time scales as high as 25 years.  相似文献   

16.
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth’s gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth’s shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.  相似文献   

17.
    
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100?days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.  相似文献   

18.
This paper aims at investigating the stability over 150 years of a very large number of trajectories in the Medium Earth Orbit (MEO) region, near the orbits devoted to radionavigation such as the Global Navigation Satellite Systems (GNSS like GPS, Glonass, Galileo, COMPASS).  相似文献   

19.
Orbit manoeuvre of low Earth orbiting (LEO) debris using ground-based lasers has been proposed as a cost-effective means to avoid debris collisions. This requires the orbit of the debris object to be determined and predicted accurately so that the laser beam can be locked on the debris without the loss of valuable laser operation time. This paper presents the method and results of a short-term accurate LEO (<900 km in altitude) debris orbit prediction study using sparse laser ranging data collected by the EOS Space Debris Tracking System (SDTS). A main development is the estimation of the ballistic coefficients of the LEO objects from their archived long-term two line elements (TLE). When an object is laser tracked for two passes over about 24 h, orbit prediction (OP) accuracy of 10–20 arc seconds for the next 24–48 h can be achieved – the accuracy required for laser debris manoeuvre. The improvements in debris OP accuracy are significant in other applications such as debris conjunction analyses and the realisation of daytime debris laser tracking.  相似文献   

20.
Motivated by the near-future re-exploration of the cislunar space, this paper investigates dynamical substitutes of the Earth-Moon’s resonant Near-Rectilinear Halo Orbits (NRHOs) under the Elliptic-Circular Restricted Four-Body Problem formulation of the Earth-Moon-Sun system. This model considers that the Earth and Moon move in elliptical orbits about each other and that a third body, the Sun, moves in a circular orbit about the Earth-Moon barycenter. By making use of this higher-fidelity dynamical model, we are able to incorporate the Sun’s influence and the Moon’s eccentricity, two of the most significant perturbations of the cislunar environment. As a result of these perturbations, resonant periodic NRHOs of the Earth-Moon Circular Restricted Three-Body Problem (CR3BP) are hereby replaced by two-dimensional quasi-periodic tori that better represent the dynamical evolution of satellites near the vicinity of the Moon. We present the steps and algorithms needed to compute these dynamical structures in the Elliptic-Circular model and subsequently assess their utility for spacecraft missions. We focus on the planned orbit for the NASA-led Lunar Gateway mission, a 9:2 synodic resonant L2 southern NRHO, as well as on the 4:1 synodic and 4:1 sidereal resonances, due to the proximity to the nominal orbit and their advantageous dynamical properties. We verify that the dynamical equivalents of these orbits preserve key dynamical attributes such as eclipse avoidance and near-linear stability. Furthermore, we find that the higher dimensionality of quasi-periodic solutions offers interesting alternatives to mission designers in terms of phasing maneuvers and low-altitude scientific observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号