首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 6 毫秒
1.
We have carried out a numerical investigation of the coupled gravitational and non-gravitational perturbations acting on Earth satellite orbits in an extensive grid, covering the whole circumterrestrial space, using an appropriately modified version of the SWIFT symplectic integrator, which is suitable for long-term (120?years) integrations of the non-averaged equations of motion. Hence, we characterize the long-term dynamics and the phase-space structure of the Earth-orbiter environment, starting from low altitudes (400?km) and going up to the GEO region and beyond. This investigation was done in the framework of the EC-funded “ReDSHIFT” project, with the purpose of enabling the definition of passive debris removal strategies, based on the use of physical mechanisms inherent in the complex dynamics of the problem (i.e., resonances). Accordingly, the complicated interactions among resonances, generated by different perturbing forces (i.e., lunisolar gravity, solar radiation pressure, tesseral harmonics in the geopotential) are accurately depicted in our results, where we can identify the regions of phase space where the motion is regular and long-term stable and regions for which eccentricity growth and even instability due to chaotic behavior can emerge. The results are presented in an “atlas” of dynamical stability maps for different orbital zones, with a particular focus on the (drag-free) range of semimajor axes, where the perturbing effects of the Earth’s oblateness and lunisolar gravity are of comparable order. In some regions, the overlapping of the predominant lunisolar secular and semi-secular resonances furnish a number of interesting disposal hatches at moderate to low eccentricity orbits. All computations were repeated for an increased area-to-mass ratio, simulating the case of a satellite equipped with an on-board, area-augmenting device. We find that this would generally promote the deorbiting process, particularly at the transition region between LEO and MEO. Although direct reentry from very low eccentricities is very unlikely in most cases of interest, we find that a modest “delta-v” (ΔV) budget would be enough for satellites to be steered into a relatively short-lived resonance and achieve reentry into the Earth’s atmosphere within reasonable timescales (50?years).  相似文献   

2.
The Medium Earth Orbit (MEO) region hosts satellites for navigation, communication, and geodetic/space environmental science, among which are the Global Navigation Satellites Systems (GNSS). Safe and efficient removal of debris from MEO is problematic due to the high cost for maneuvers needed to directly reach the Earth (reentry orbits) and the relatively crowded GNSS neighborhood (graveyard orbits). Recent studies have highlighted the complicated secular dynamics in the MEO region, but also the possibility of exploiting these dynamics, for designing removal strategies. In this paper, we present our numerical exploration of the long-term dynamics in MEO, performed with the purpose of unveiling the set of reentry and graveyard solutions that could be reached with maneuvers of reasonable ΔV cost. We simulated the dynamics over 120–200?years for an extended grid of millions of fictitious MEO satellites that covered all inclinations from 0 to 90°, using non-averaged equations of motion and a suitable dynamical model that accounted for the principal geopotential terms, 3rd-body perturbations and solar radiation pressure (SRP). We found a sizeable set of usable solutions with reentry times that exceed 40 years, mainly around three specific inclination values: 46°, 56°, and 68°; a result compatible with our understanding of MEO secular dynamics. For ΔV?300 m/s (i.e., achieved if you start from a typical GNSS orbit and target a disposal orbit with e<0.3), reentry times from GNSS altitudes exceed 70 years, while low-cost (ΔV?535 m/s) graveyard orbits, stable for at lest 200?years, are found for eccentricities up to e0.018. This investigation was carried out in the framework of the EC-funded “ReDSHIFT” project.  相似文献   

3.
This paper presents the results of a numerical evaluation of the natural lifetime reduction in low Earth orbit, due to dynamical perturbations. The study considers two values for the area-to-mass ratio, a nominal ratio which resembles a typical value of spacecraft in orbit today, and an enhanced ratio which covers the surface augmentation. The results were obtained with two orbit propagators, one of a semi-analytical nature and the second one using non-averaged equations of motion. The simulations for both propagators were set up similarly to allow comparison. They both use the solar radiation pressure and the secular terms of the geopotential (J2,J4 and J6). The atmospheric drag was turned on and off in both propagators to alternatively study the eccentricity build up and the residual lifetime. The non-averaging case also covers a validation with the full 6?×?6 geopotential. The results confirm the findings in previous publications, that is, the possibility for de-orbiting from altitudes above the residual atmosphere if a solar sail is deployed at the end-of-life, due to the combined effect of solar radiation pressure and the oblateness of the Earth. At near polar inclinations, shadowing effects can be exploited to the same end. The results obtained with the full, non-averaging propagator revealed additional de-orbiting corridors associated with solar radiation pressure which were not found by previous work on space debris mitigation. The results of both tools are compared for specific initial conditions. For nominal values of area-to-mass ratio, instead, it is confirmed that this resonance effect is negligible.The paper then puts the findings in the perspective of the current satellite catalogue. It identifies space missions which are currently close to a resonance corridor and shows the orbit evolution within the resonances with a significantly shorter residual orbital lifetime. The paper finishes with a discussion on the exploitation of these effects with regards to the long-term simulation of the space debris environment and a flux and collision probability comparison.  相似文献   

4.
5.
A large set of simulations, including all the relevant perturbations, was carried out to investigate the long-term dynamical evolution of fictitious high area-to-mass ratio (A/M) objects released, with a negligible velocity variation, in each of the six orbital planes used by Global Positioning System (GPS) satellites. As with similar objects discovered in near synchronous trajectories, long lifetime orbits, with mean motions of about 2 revolutions per day, were found possible for debris characterized by extremely high area-to-mass ratios. Often the lifetime exceeds 100 years up to A/M ∼ 45 m2/kg, decreasing rapidly to a few months above such a threshold. However, the details of the evolution, which are conditioned by the complex interplay of solar radiation pressure and geopotential plus luni-solar resonances, depend on the initial conditions. Different behaviors are thus possible. In any case, objects like those discovered in synchronous orbits, with A/M as high as 20–40 m2/kg, could also survive in this orbital regime, with semi-major axes close to the semi-synchronous values, with maximum eccentricities between 0.3 and 0.7, and with significant orbit pole precessions (faster and wider for increasing values of A/M), leading to inclinations between 30° and more than 90°.  相似文献   

6.
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites.  相似文献   

7.
This paper provides a Hamiltonian formulation of the averaged equations of motion with respect to short periods (1 day) of a space debris subjected to direct solar radiation pressure and orbiting near the geostationary ring. This theory is based on a semi-analytical theory of order 1 regarding the averaging process, formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination, truncated at an arbitrary high order.  相似文献   

8.
In this paper we provide an extensive analysis of the global dynamics of high-area-to-mass ratios geosynchronous (GEO) space debris, applying a recent technique developed by Cincotta and Simó [Cincotta, P.M., Simó, C.Simple tools to study global dynamics in non-axisymmetric galactic potentials–I. Astron. Astrophys. (147), 205–228, 2000.], Mean Exponential Growth factor of Nearby Orbits (MEGNO), which provides an efficient tool to investigate both regular and chaotic components of the phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号