共查询到20条相似文献,搜索用时 0 毫秒
1.
E.L. Afraimovich N.P. Perevalova I.V. Zhivetiev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We developed a method of estimation of a relative amplitude dI/I of the total electron content (TEC) variations in the ionosphere as deduced from the data of the global GPS receivers network. To obtain statistically significant results we picked out three latitudinal belts provided in the Internet by the maximum number of GPS sites. They are high-latitudinal belt (50–80°N, 200–300°E; 59 sites), mid latitude belt (20–50°N, 200–300°E; 817 sites), and equatorial belt (±20°N, 0–360°E; 76 sites). The results of the analysis of the diurnal and latitudinal dependencies of dI/I and dI/I distribution probability for 52 days with different levels of geomagnetic activity are presented. It was found that on average the relative amplitude of the TEC variations varies within the range 0–10% proportionally to the value of the Kp geomagnetic index. In quiet conditions the relative amplitude dI/I of the TEC variations at night significantly exceeds the daytime relative amplitude. At high levels of magnetic field disturbances, the geomagnetic control of the amplitude of TEC variations at high and middle latitudes is much more significant than the regular diurnal variations. At the equatorial belt, on average, the amplitude of TEC variations in quiet and disturbed periods almost does not differ. The obtained results may be useful for development of the theory of ionospheric irregularities. 相似文献
2.
Chin-Chun Wu K. Liou Shao-Ju Shan C.-L. Tseng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):611-616
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months). 相似文献
3.
A.O. Adewale E.O. Oyeyemi J. Olwendo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector. 相似文献
4.
V.E. Kunitsyn A.M. Padokhin A.E. Vasiliev G.A. Kurbatov V.L. Frolov G.P. Komrakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The purpose of this work is to report the experimental evidences for the influence of perturbations in the electron density in the dayside mid-latitude ionosphere, that are caused by high-frequency heating of the F2 layer, on the GNSS signals. The experiments were carried out at the Sura heater (Radio Physical Research Institute, N. Novgorod). During the sessions of ionospheric heating with different time modulations of the radiated power the rays linking the navigational satellites with the ground receiver intersected the heated region. Variations in the total electron content (TEC) were studied; these variations are proportional to the reduced phases of navigational signals. It is shown that with the square-wave modulation of the radiated power (with periods of 1, 6, 10 and 15 min), perturbations with periods of the main modulation of heating and its harmonics appear in the spectrum of TEC variations. Examples are presented of identification of the heating-induced variations in TEC, including determination of the amplitudes and time characteristics of these variations. 相似文献
5.
I.E. Zakharenkova Iu.V. Cherniak A. Krankowski I.I. Shagimuratov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Comparative analysis of GPS TEC data and FORMOSAT-3/COSMIC radio occultation measurements was carried out for Japan region during period of the extremely prolonged solar minimum of cycle 23/24. COSMIC data for different seasons corresponded to equinox and solstices of the years 2007–2009 were analyzed. All selected electron density profiles were integrated up to the height of 700 km (altitude of COSMIC satellites), the monthly median estimates of Ionospheric Electron Content (IEC) were retrieved with use of spherical harmonics expansion. Monthly medians of TEC values were calculated from diurnal variations of GPS TEC estimates during considered month. Joint analysis of GPS TEC and COSMIC data allows us to extract and estimate electron content corresponded to the ionosphere (its bottom and topside parts) and the plasmasphere (h > 700 km) for different seasons of 2007–2009. Percentage contribution of ECpl to GPS TEC indicates the clear dependence from the time and varies from a minimum of about 25–50% during day-time to the value of 50–75% at night-time. Contribution of both bottom-side and topside IEC has minimal values during winter season in compare with summer season (for both day- and night-time). On average bottom-side IEC contributes about 5–10% of GPS TEC during night and about 20–27% during day-time. Topside IEC contributes about 15–20% of GPS TEC during night and about 35–40% during day-time. The obtained results were compared with TEC, IEC and ECpl estimates retrieved by Standard Plasmasphere–Ionosphere Model that has the plasmasphere extension up to 20,000 km (GPS orbit). 相似文献
6.
A. Krankowski I.I. Shagimuratov L.W. Baran G.A. Yakimova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):628-638
GPS observations from EUREF permanent GPS network were used to observe the response of TEC (Total Electron Content) to the total solar eclipse on October 3, 2005, under quiet geomagnetic conditions of the daytime ionosphere. The effect of the eclipse was detected in diurnal variations and more distinctly in the variations of TEC along individual satellite passes. The trough-like variations with a gradual decrease and followed by an increase of TEC at the time of the eclipse were observed over a large region. The depression of TEC amounted to 3–4 TECU. The maximum depression was observed over all stations located at the maximum path of the solar eclipse. The delay of a minimum level of TEC with respect to the maximum phase of the eclipse was about 20–30 min. 相似文献
7.
Shuhui Li Junhuan Peng Weichao Xu Kun Qin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes. 相似文献
8.
F.A. Cardoso Y. SahaiF.L. Guarnieri P.R. FagundesV.G. Pillat J.V.P.R. da Silva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated. 相似文献
9.
Iu.V. Cherniak I.E. Zakharenkova A. Krankowski I.I. Shagimuratov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The plasmaspheric electron content (PEC) was estimated by comparison of GPS TEC observations and FORMOSAT-3/COSMIC radio occultation measurements at the extended solar minimum of cycle 23/24. Results are retrieved for different seasons (equinoxes and solstices) of the year 2009. COSMIC-derived electron density profiles were integrated up to the height of 700 km in order to retrieve estimates of ionospheric electron content (IEC). Global maps of monthly median values of COSMIC IEC were constructed by use of spherical harmonics expansion. The comparison between two independent measurements was performed by analysis of the global distribution of electron content estimates, as well as by selection specific points corresponded to mid-latitudes of Northern America, Europe, Asia and the Southern Hemisphere. The analysis found that both kinds of observations show rather similar diurnal behavior during all seasons, certainly with GPS TEC estimates larger than corresponded COSMIC IEC values. It was shown that during daytime both GPS TEC and COSMIC IEC values were generally lower at winter than in summer solstice practically over all specific points. The estimates of PEC (h > 700 km) were obtained as a difference between GPS TEC and COSMIC IEC values. Results of comparative study revealed that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50–60%) during night-time and lesser values (25–45%) during day-time. 相似文献
10.
Iu.V. Cherniak I.E. Zakharenkova D.A. Dzyubanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI. 相似文献
11.
Rajat Acharya Bijoy Roy M.R. Sivaraman Ashish Dasgupta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The Ionospheric Total Electron Content is responsible for the group delay of the signals from the Navigation satellites. This delay causes ranging error, which in turn degrades the accuracy of position estimated by the receivers. For critical applications, single frequency receivers resort to Satellite Based Augmentation Systems in order to have improved accuracy and integrity. The performance of these systems in terms of accuracy can be improved if predictions of the delays are available simultaneously with real measurements. This paper attempts to predict the Total Electron Content using adaptive recurrent Neural Network at three different locations of India. These locations are selected at the magnetic equator, at the equatorial anomaly crest and outside the anomaly range, respectively. In-situ Learning Algorithm has been used for tracking the non-stationary nature of the variation. Prediction is done for different prediction intervals. It is observed that, for each case, the mean and root mean square values of prediction errors remain small enough for all practical applications. Analysis of Variance is also done on the results. 相似文献
12.
T.L. Gulyaeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(5):1588-1595
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model. 相似文献
13.
Lj.R. Cander H. Haralambous 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Observations of ionospheric vertical total electron content (vTEC) from European ground-based Global Navigation Satellite Systems (GNSS) receivers during the period January 2008–January 2010 are used to investigate, for the first time, vTEC sensitivity to weak geomagnetic disturbances under extreme solar minimum conditions. This study shows a significant number of events for the period in question, all of which exhibited some form of exceptionally large values of vTEC during small-magnitude geomagnetic disturbances. To illustrate our point on the importance of vTEC enhancements during the extreme solar minimum and its relevance for the current GNSS and future Galileo applications, we present in this paper the results associated with two significant events that both occurred in equinoctial months. The 10–12 October 2009 event of anomalous TEC enhancement at two distant mid-latitude locations HERS (0.3 E; 50.9 N) and NICO (33.4 E, 35.1 N) is discussed in the context of strong vTEC variations during the well established ionospheric storm on 11 October 2008. We conclude with a short summary of the new findings and their consequences on ionospheric monitoring and modelling for operational communication and navigation systems. 相似文献
14.
B.W. Joshua J.O. Adeniyi B.W. Reinisch I.A. Adimula A.O. Olawepo O.A. Oladipo S.J. Adebiyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The effects of some geomagnetic storms on the F2 layer peak parameters over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°) have been investigated. Our results showed that the highest intensity of the noon bite-out occurred during the March equinox and lowest during the June Solstice on quiet days. Quiet day NmF2 disturbances which appeared as a pre-storm enhancement, but not related to the magnetic storm event that followed were observed at this station. These enhancements were attributed to the modification of the equatorial electric field as a result of injection of the Auroral electric field to the low and equatorial ionosphere. For disturbed conditions, the morphology of the NmF2 on quiet days is altered. Daytime and nighttime NmF2 and hmF2 enhancements were recorded at this station. Decreases in NmF2 were also observed during the recovery periods, most of which appeared during the post-noon period, except the storm event of May 28–29. On the average, enhancements in NmF2 (i.e. Positive phases) are the prominent features of this station. Observations from this study also indicate that Dst, Ap and Kp which have been the most widely used indices in academic research in describing the behavior of geomagnetic storms, are not sufficient for storm time analysis in the equatorial and low latitude ionosphere. 相似文献
15.
A.O. Alothman M.A. Alsubaie M.E. Ayhan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation. 相似文献
16.
O.J. Oyedokun A.O. Akala E.O. Oyeyemi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(4):1222-1243
This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ ?100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time behavior of TEC shows clear positive and negative phases relative to the non-storm (median) behavior, with amplitudes being dependent on the time of sudden commencement of the storm and location. When a storm starts in the morning period, total electron content increases for all stations while a decrease in total electron content is manifested for a storm that had its sudden commencement in the afternoon period. The TEC and the EIA crest during the main phase of the storm is significantly impacted by the geomagnetic storm, which experiences an increase in the intensity of TEC while the location and spread of the crest usually manifest a poleward expansion. 相似文献
17.
J.O. Olwendo P.J. Cilliers P. Baki C. Mito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation. 相似文献
18.
Arun Kumar Singh Rupesh M. Das Shailendra Saini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(11):3558-3567
The solar cycle variation and seasonal changes significantly affects the ionization process of earth’s ionosphere and required to be monitored in real time basis for regional level refinement of existing models. In view of this, the present study has been carried out by using the ionospheric Total Electron Content (TEC) data observed with the help of Global Ionospheric Scintillation and TEC monitoring (GISTM) system installed at Indian Antarctic Research Station, “Maitri” [70°46′00″S 11°43′56″E] during the ascending phase of 24th solar cycle. The daily values of solar extreme ultraviolet (EUV) flux (0.1–50?nm wavelength), 10.7?cm radio flux F10.7 and Sunspot number (SSN) has been taken as a proxy to represent the solar cycle variation to correlate with TEC. The linear regression results revels better correlation of TEC with EUV flux rather than F10.7 and SSN. Also, the EUV and TEC show better agreement during summer as compared to winter and equinox period. Correlation between TEC and EUV appears significantly noticeable during ten internationally defined quiet days of each month (stable background geophysical condition) as compared to the overall days (2010–2014). Further, saturation effect has been observed on TEC values during the solar maxima year 2014. The saturation effects are more prominent during the night hours of winter and equinox season due to transportation losses manifested by the equator-ward direction of meridional wind. 相似文献
19.
Zhenzhong Xu Weimin Wang Nan Zhou Xiaofei Song Haotian Zhu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The variation of TEC data at Wuhan station (geographic coordinate: 30.5°N, 114.4°E; geomagnetic coordinate: 19.2°N, 183.8°E) at crest of equatorial anomaly in China from January 1997 to December 2007 were analyzed. Variability with solar activity, annual, semiannual, diurnal and seasonal variation were also analyzed. The MSIS00 model and ISR model were used to analyze the possible mechanisms of the variabilities found in the results. The TEC data in 1997 and 2001 deduced from another crest station Xiamen (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) were used to contrast. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Typical diurnal variation behaves as a minimum of the TEC in the pre-dawn hours around 05:00–06:00LT and a maximum on the afternoon hours around 13:00–15:00LT. Some features like the semiannual anomaly and winter anomaly in TEC have been reported. The anomaly may be the result of common action of the electric field over the magnetic equatorial and the [O/N2] at the crest station. 相似文献
20.
Sajan C. Mushini P.T. Jayachandran R.B. Langley J.W. MacDougall 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1309-1313
The dispersive nature of the ionosphere makes it possible to measure its total electron content (TEC). Thus Global Positioning System, which uses dual-frequency radio signals, is an ideal system to measure TEC. When data from an ionosonde situated in polar region was observed, the height of an approximated thin shell of electrons (shell height) used in GPS studies was seen not to be fixed but rather changing with time. Here we introduce a new method in which we included the varying shell heights derived from the ionosonde to map the slant total electron content from GPS to obtain a more precise vertical total electron content of the ionosphere contrary to some previous methods which used fixed shell heights. In this paper we also compared the ionosonde derived TEC with the GPS derived vertical TEC (vTEC) values. These GPS vTEC values were obtained from GPS slant TEC (sTEC) measurements using both fixed shell height and varying shell heights (from ionosonde measurements). For the polar regions, the varying shell height approach produced better results than the fixed shell height and compared to exponential function, Chapman function seems to be a better function to model the topside ionosphere. 相似文献