首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Indian sector encompasses the equatorial and low latitude regions where the ionosphere is highly dynamic and is characterized by the equatorial ionization anomaly (EIA) resulting in large latitudinal electron density gradients causing errors and uncertainties in the estimation of range delays in satellite based navigation systems. The diurnal and seasonal variations of standard deviations in the TEC data measured during the low sunspot period 2004–2005 at 10 different Indian stations located from equator to the anomaly crest region and beyond are examined and presented. The day-to-day variability in TEC is found to be lowest at the equatorial station and increases with latitude up to the crest region of EIA and decreases beyond.  相似文献   

2.
This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ? S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.  相似文献   

3.
With the rapid increase of GPS/GNSS receivers being deployed and operated in China, real-time GPS data from nearly a thousand sites are available at the National Center for Space Weather, China Meteorology Administration. However, it is challenging to generate a high-quality regional total electron content (TEC) map with the traditional two-dimensional (2-D) retrieval scheme because a large horizontal gradient has been reported over east–south Asia due to the northern equatorial ionization anomaly. We developed an Ionosphere Data Assimilation Analysis System (IDAAS), which is described in this study, using an International Reference Ionosphere (IRI) model as the background and applying a Kalman filter for updated observations. The IDAAS can reconstruct a three-dimensional ionosphere with the GPS slant TEC. The inverse slant TEC correlates well with observations both for GPS sites involved in the reconstruction and sites that are not involved. Based on the IDAAS, simulations were performed to investigate the deviation relative to the slant-to-vertical conversion (STV). The results indicate that the relative deviation induced by slant-to-vertical conversion may be significant in certain instances, and the deviation varies from 0% to 40% when the elevation decreases from 90° to 15°, while the relative IDAAS deviation is much smaller and varies from −5% to 15% without an elevation dependence. Compared with ‘true TEC’ map derived from the model, there is large difference in STV TEC map but no obvious discrepancy in IDAAS map. Generally, the IDAAS TEC map is much closer to the “true TEC” than is STV TEC map is.  相似文献   

4.
GPS-derived vertical TEC recorded at Xiamen (24.5°N, 118.1°E, geomagnetic latitude 13.2°N), China, during year 2006 is analyzed for the first time and compared to that predicted by ionosphere model SPIM recommend by ISO. A manifest seasonal anomaly is found with the high value during equinoctial season and low value during summer and winter season. Relative standard deviation for VTEC shows high value at around midnight and before sunrise. The correlation analysis exhibits that the variation of VTEC has a very weak relation with geomagnetic and solar activities (Dst, AP, SSN and F10.7). Comparative results reveal that the SPIM overestimates the observed VTEC at most of the time.  相似文献   

5.
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F   layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.  相似文献   

6.
The high-precision demands imposed by the ocean altimetry community of the late 1980 resulted in the TOPEX/Poseidon mission. This mission was the first to carry as its main instrument a dual-frequency sea-altimeter on board a satellite. This instrument together with other state-of-the-art technologies involved in the mission, led to sea-height determinations with precision better than 2 cm. As a by-product, the TOPEX/Poseidon mission provided vertical TEC determinations that since they became available, have demonstrated to be a powerful tool for ionospheric studies.  相似文献   

7.
利用广州站(23.2°N, 113.3°E) GPS双频接收机监测的电离层TEC数据和IRI-2007模型不同电离层输入参数计算得到的TEC预测值, 对比分析了太阳活动低年(2008年)广州地区TEC的变化特征. 结果表明, TEC观测值周日变化在16:00LT左右达到最大值, 而IRI-TEC最大值出现时间较GPS-TEC提前1h左右. TEC季节变化在春秋分较高, 两至季节较低, 表现出明显的半年特性和季节依赖性, 并出现冬季异常现象. IRI-TEC与GPS-TEC在白天具有较好的一致性, 夜间偏差较大. 不同电离层输入参数得到的TEC预测值也相差较大, 选用顶部电子密度参数NeQuick、底部厚度参数B0 Table并用URSI系数计算F2层峰值参数时, 能较好地反映TEC观测值的变化特征. 在对磁暴的响应上, 预测值无明显变化, 观测值则有比较明显的表现. 通过对比, 初步分析了利用IRI-2007模型预测TEC在广州地区的适用性, 并给出了合理的参数选择方案.  相似文献   

8.
Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800–2500?km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region.  相似文献   

9.
In this paper, latitudinal profiles of the vertical total electron content (TEC) deduced from the dual-frequency GPS measurements obtained at ground stations around 120°E longitude were used to study the variability of the equatorial ionization anomaly (EIA). The present study mainly focuses on the analysis of the crest-to-trough TEC ratio (TEC-CTR) which is an important parameter representing the strength of EIA. Data used for the present study covered the time period from 01 January, 1998 to 31 December, 2004. An empirical orthogonal function analysis method is used to obtain the main features of the TEC-CTR’s diurnal and seasonal variations as well as its solar activity level dependency. Our results showed that: (1) The diurnal variation pattern of the TEC-CTR at 120°E longitude is characterized by two remarkable peaks, one occurring in the post-noon hours around 13–14 LT, and the other occurring in the post-sunset hours around 20–21 LT, and the post-sunset peak has a much higher value than the post-noon one. (2) Both for the north and south crests, the TEC-CTR at 120°E longitude showed a semi-annual variation with maximum peak values occurring in the equinoctial months. (3) TEC-CTR for the north crest has lower values in summer than in winter, whereas TEC-CTR for the south crest does not show this ‘winter anomaly’ effect. In other words, TEC-CTR for both the north and south crests has higher values in the northern hemispheric winter than in the northern hemispheric summer. (4) TEC-CTR in the daytime post-noon hours (12–14 LT) does not vary much with the solar activity, however, TEC-CTR in the post-sunset hours (19–21 LT) shows a clear dependence on the solar activity, its values increasing with solar activity.  相似文献   

10.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

11.
The occurrence of ionospheric irregularities at high latitudes, with dimensions of several kms down to decameter scale size shows strong correlation with geomagnetic disturbance, season and solar activity. Transionospheric radio waves propagating through these irregularities experience rapid random fluctuations in phase and/or amplitude of the signal at the receiver, termed scintillation, which can degrade GNSS services. Thus, investigation and prediction of this scintillation effect is very important. To investigate such scintillation effects, a GISTM (GPS Ionospheric Scintillation and TEC Monitoring) NovAtel dual frequency (L1/L2) GPS receiver has been installed at Trondheim, Norway (63.41°63.41° N, 10.4°10.4° E), capable of collecting scintillation indices at a 1 min rate as well as the raw data (phase and intensity) of the satellite signals at a 50 Hz sampling rate and TEC (Total Electron Content) at a 1 Hz rate. Many researchers have reported that both phase and amplitude scintillation is closely associated with TEC fluctuations or associated with a significant developing enhancement or depletion in the TEC. In this study, a novel analogous phase index is developed which provides samples at a 1 min rate. Generally the scintillation indices can help in estimating the irregularity scintillation effect at a one minute rate, but such procedures are time consuming if DFTs of the phase and/or amplitude at a 50 Hz data are required. In this study, instead, this analogous phase index is estimated from 1 Hz rate TEC values obtained from the raw signals and is then compared for weak, moderate and strong scintillation at Trondheim for one year of data collected from the installed GPS receiver. The spectral index of the irregularities (that is the inverse power law of their spatial spectrum) is determined from the resultant phase scintillation psd. The correlations of the scintillation indices and spectral indices with the analogous phase index have been investigated under different geomagnetic conditions (represented by the Kp index) and an approximate linear correlation of phase scintillation with the analogous phase index was found. Then a principal advantage of this index is that it achieves this correlation without requiring a high sampling data rate and the need for DFTs. Thus, the index seems a good candidate for developing a simple means of ionospheric scintillation prediction which could also be utilized in the development of alerts using regional mappings.  相似文献   

12.
The United States Air Force Academy (USAFA) is in the process of developing a series of ground-based and space-based experiments to investigate the equatorial ionosphere over Guam and the southern crest of the Equatorial Appleton Anomaly over New Guinea. On the ground the Digital Ionospheric Sounder (University of Massachusetts, Lowell DPS-4 unit) and a dual-frequency GPS TEC/scintillation monitor will be used to investigate ionospheric phenomena in both campaign and long-term survey modes. In campaign mode, we will combine these observations with those collected from space during USAFA’s FalconSAT-3 and FalconSAT-5 low Earth orbit satellite missions, which will be active over a period of several years beginning in the first quarter of the 2007 calendar year. Additionally, we will investigate the long-term morphology of key ionospheric characteristics useful for driving the International Reference Ionosphere, such as critical frequencies (foE, foF1, foF2, etc.), the M(3000) F2 parameter (the maximum useable frequency for a signal refracted within the F2 layer and received on the ground at a distance of 3000 km away), and a variety of other characteristics. Specific targets of investigation include: (a) a comparison of TEC observed by the GPS receiver with those calculated by IRI driven by DPS-4 observations, (b) a comparison of plasma turbulence observed on-orbit with ionospheric conditions as measured from the ground, and (c) a comparison between topside ionospheric satellite in situ measurements of plasma density during an overpass of a Digisonde versus the calculated value based on extrapolation of the electron density profiles using Digisonde data and a topside α-Chapman function. This last area of investigation is discussed in detail in this paper.  相似文献   

13.
The electron density and temperature distribution of the equatorial and low latitude ionosphere in the Indian sector has been investigated by simultaneously solving the continuity, momentum and energy balance equations of ion and electron flux along geomagnetic field lines from the Northern to the Southern hemisphere. Model algorithm is presented and results are compared with the electron density and electron temperature measured in situ by Indian SROSS C2 satellite at an altitude of ∼500 km within 31°S–34°N and 75 ± 10°E that covers the Indian sector during a period of low solar activity. Equatorial Ionization Anomaly (EIA) observed in electron density, morning and afternoon enhancements, equatorial trough in electron temperature have been simulated by the model within reasonable limits of accuracy besides reproducing other normal diurnal features of density and temperature.  相似文献   

14.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   

15.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

16.
This work presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service (IGS) receivers at Malindi (mal2: 2.9oS, 40.1oE, dip −26.813o), Kasarani (rcmn: 36.89oE, 1.2oS, dip −23.970o), Eldoret (moiu: 35.3oE, 0.3oN, dip −21.037o) and GPS-SCINDA (36.8oE, 1.3oS, dip −24.117o) receiver located in Nairobi for the period 2009–2011. The diurnal, monthly and seasonal variations of the GPS derived TEC (GPS-TEC) and effects of space weather on TEC are compared with TEC from the 2007 International Reference Ionosphere model (IRI-TEC) using the NeQuick option for the topside electron density. The diurnal peaks in GPS-TEC is maximum during equinoctial months (March, April, October) and in December and minimum in June solstice months (May, June, July). The variability in GPS-TEC is minimal in all seasons between 0:00 and 04:00 UT and maximum near noon between 10:00 and 14:00 UT. Significant variability in TEC at post sunset hours after 16:00 UT (19:00 LT) has been noted in all the seasons except in June solstice. The TEC variability of the post sunset hours is associated with the occurrence of the ionization anomaly crest which enhances nighttime TEC over this region. A comparison between the GPS-TEC and IRI-TEC indicates that both the model and observation depicts a similar trend in the monthly and seasonal variations. However seasonal averages show that IRI-TEC values are higher than the GPS-TEC. The IRI-TEC also depicts a double peak in diurnal values unlike the GPS-TEC. This overestimation which is primarily during daytime hours could be due to the model overestimation of the equatorial anomaly effect on levels of ionospheric ionization over the low latitude regions. The IRI-TEC also does not show any response to geomagnetic activity, despite the STORM option being selected in the model; the IRI model generally remains smooth and underestimates TEC during a storm. The GPS-TEC variability indicated by standard deviation seasonal averages has been presented as a basis for extending the IRI-model to accommodate TEC-variability.  相似文献   

17.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29°N, Geog. Long. 70.74°E; Geom. Lat. 14.21°N, Geom. Long. 144.90°E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7∼83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = −0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring.  相似文献   

18.
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.  相似文献   

19.
利用武汉站(30.5°N, 114.4°E)1997年1月1日至2007年12月31日电离层TEC、太阳黑子数及地磁指数等资料, 分析了第23周武汉站TEC的周日变化、季节变化、半年变化以及与太阳活动的相关性等特征; 以2006年4月13-17日发生的磁暴为例, 讨论了武汉站TEC对磁暴的响应以及可能的机理. 结果表明,武汉站电离层TEC在太阳活动高、低年均呈典型的周日变化特征; 冬季异常和半年异常特征明显, 且受太阳活动强弱影响; TEC和太阳黑子数年均值相关系数为0.9611; TEC对磁暴的响应可能是由磁层穿透电场和中性风共同作用导致的, 具体影响机制有待深入研究.  相似文献   

20.
In this paper, the response of the equatorial and low latitude ionosphere to three intense geomagnetic storms occurred in 2002 and 2003 is reported. For that, critical frequency of F2-layer foF2 and the peak height hmF2 hmF2 for the stations Jicamarca (11.9°S), Ascension Is (7.92°S) and Tucuman (26.9°S) are used. The results show a “smoothing” of the Equatorial Anomaly structure during the development of the storms. Noticeable features are the increases in foF2 before the storm sudden commencement (SC) at equatorial latitudes and the southern crest of the Equatorial Anomaly. In some cases nearly simultaneous increases in foF2 are observed in response to the storm, which are attributed to the prompt electric field. Also, positive effects observed at equatorial and low latitudes during the development of the storm seem to be caused by the disturbance dynamo electric field due to the storm-time circulation. Increases in foF2 above the equator and simultaneous decreases in foF2 at the south crest near to the end of a long-duration main phase are attributed to equatorward-directed meridional winds. Decreases in foF2 observed during the recovery phase of storms are believed to be caused by composition changes. The results indicate that the prompt penetration electric field on the EA is important but their effect is of short lived. More significant ionospheric effects are the produced by the disturbance dynamo electric field. The role of storm-time winds is important because they modify the “fountain effect” and transport the composition changes toward low latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号