首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
One of the central mysteries of white dwarf studies has been the nature and abundance of trace elements in the atmospheres of these stars. It had been thought that the dominant trace element in otherwise pure hydrogen DA white dwarf atmospheres was helium. However, some spectroscopic and theoretical evidence suggested that, at least in some stars, heavier elements may be important. Prior to the launch of ROSAT the questions regarding the atmospheric composition of DA white dwarfs in general remained unresolved. The ROSAT mission has provided EUV and X-ray data for a large sample of DA white dwarfs with which we can study their photospheric composition and structure through the effect of trace opacity sources on the emergent fluxes. Contrary to expectations little (if any) helium is found and the main sources of opacity appear to be trace heavy elements. Support for these conclusions is found in recent EUV and far-UV spectra of several stars. However, photometric data do not allow us to determine the abundance of the individual elements and observations with the EUVE spectrometers will be essential for detailed composition measurements.  相似文献   

2.
EXOSAT has observed 19 hot white dwarfs with alleged strong soft X-ray emission. Positive detection of a large fraction of this sample was obtained, among these practically all hot DA dwarfs. High-resolution spectral data, acquired with the 500 1/mm grating spectrometer, indicates no traces of He in the atmosphere of HZ43, i.e. n(He)/n(H) ? 10?5 at a photospheric temperature of 60000 K (log g = 8). In contrast, the hot DA1 dwarf Feige 24 shows the presence of an appreciable He-abundance (n(He)/n(H) ? 10?3); however no simple homogeneously mixed H/He atmosphere can explain the observed spectral shape.  相似文献   

3.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   

4.
The electron-impact widths for 15 doubly charged Nb ion lines have been theoretically determined by using the modified semiempirical method. Using the obtained results, we considered the influence of the electron-impact mechanism on line shapes in spectra of chemically peculiar stars and white dwarfs.  相似文献   

5.
The Balloon Borne Experiment with a Superconducting Solenoid Spectrometer (BESS) was flown annually in 1993, 1994, and 1995. In this report we present the energy spectra and isotopic composition of cosmic ray H and He measured from the 1993 flight. The low energy fluxes of H and He agree with the IMP-8 satellite data for a 26 day period (7/14/93 – 8/9/93) that overlapped the BESS flight. Both 2H and 3He were well separated from 1H and 4He. The measured spectra were corrected for the atmospheric overburden and compared with the interstellar/heliospheric propagation calculations.  相似文献   

6.
The degree of apex–antapex cratering asymmetry of a synchronously rotating satellite primarily depends on the mean encounter velocity of impactors with respect to the planetary system and the orbital velocity of the satellite. This means that we can estimate the mean encounter velocity of impactors by observing the apex–antapex cratering asymmetry, if the relationship between these is known. To apply this technique to the Moon, we attempt to derive the relationship between the mean encounter velocity of impactors and the degree of the lunar cratering asymmetry as a function of time, considering the temporal variation in the lunar orbital velocity during the last 4.0 Gyr. We used the cratering asymmetry of Zahnle et al. [Zahnle, K., Schenk, P., Sobieszczyk, S. et al. Differential cratering of synchronously rotating satellites by ecliptic comets. Icarus 153, 111–129, 2001] to obtain the relationship. Applying this relationship enables us to estimate the impactor’s velocity of the Earth–Moon system from an investigation of the spatial distribution of lunar craters. Furthermore, we re-evaluate the cratering asymmetry’s influence on lunar cratering chronology.  相似文献   

7.
We analyze the advantages of using ultra-cold coherent sources of atoms for matter-wave interferometry in space. We present a proof-of-principle experiment that is based on an analysis of the results previously published in Richard et al. (2003) from which we extract the ratio h/m for 87Rb. This measurement shows that a limitation in accuracy arises due to atomic interactions within the Bose–Einstein condensate. Finally we discuss the promising role of coherent-matter-wave sensors, in particular inertial sensors, in future fundamental physics missions in space.  相似文献   

8.
We revisit an example of “quasi-steady” magnetic reconnection at the dayside magnetopause on February 11, 1998, observed by Equator-S and Geotail at the dawnside magnetopause. Phan et al. [Phan, T.D. et al., 2000. Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850.] reported oppositely directed jets at these spacecrafts and inferred a length of the reconnection line of about 38RE. Pinnock et al. [Pinnock, M., Chisham, G., Coleman, I.J., Freeman, M.P., Hairston, M., Villain, J.-P., 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann. Geophys. 21, 1467–1482.] used measurements from SuperDARN radars to show that the reconnection electric field was variable. Here we complement this work by obtaining snapshots of the reconnection electric field from the in situ observations. To do this, we apply a reconstruction method based on a model of compressible Petschek-type magnetic reconnection. This independent method uses magnetic field observations as input data to calculate the reconnection electric field. We obtain average values of Erec in the range of 0.4–2.4 mV/m. Further we infer a distance perpendicular to the reconnection line of 0.4–0.6RE. The model results are compared with the two studies mentioned above. It thus appears that while the transfer of momentum for this event is indeed large-scale, the actual rate depends on the time it is measured.  相似文献   

9.
The digital, decimetric (950–2500 MHz) Brazilian Solar Spectroscope (BSS, Sawant, H.S., Subramanian, K.R., Faria, C., et al. Brazilian Solar Spectroscope (BSS). Solar Phys. 200, 167–176, 2001) with high time (10–1000 ms) and frequency (1–10 MHz) resolution is in regular operation since April, 1998, at the National Space Research Institute (INPE) at São José dos Campos, Brazil. The BSS has now been upgraded with a new digital data acquisition and data processing system. The new version of the BSS has improved the observational possibilities with the capability to record up to 200 frequency channels available in the selectable frequency range 950–2500 MHz. The GPS receiver permits the acquisition of data with time accuracy in the order of 0.1 ms. The software system of the BSS is composed by two distinct modules: the first, data acquisition system provides a flexible Graphical User Interface (GUI) that allows one to choose the observational parameters. The second module is the real time visualization system that permits real time visualization of the observed dynamic spectrum and additionally allows procedures for visualization and preliminary analysis of the recorded solar spectra. Using the new visualization system, we have realized two new types of dm-radio fine structures: narrow band type III bursts with positive as well as negative group frequency drift and dots emissions arranged in zebra-like and fiber-like chains. Furthermore, we have found flare generated fast wave trains according to their tadpole signature in wavelet power spectra for a decimetric type IV radio event (June 6, 2000 flare).  相似文献   

10.
Broad absorption line (BAL) variability potentially represents a powerful tool to investigate the physical nature and the structure of gas outflows in active galactic nuclei. Most existing BAL variability studies rely on observations taken at a few epochs for samples of tens of BAL QSOs. In this study we present the first “monitoring” of a single object, APM 08279+5255, which has been observed more than 20 times since 2003. All available spectra from the literature have also been analysed, including two high resolution spectra, extending the time interval from 1998 to 2012. A relative stability of the shape of the absorption profile is found. At the same time significant variations of the equivalent width are observed. A correlation of the BAL equivalent width with the QSO luminosity is found for the first time. These results suggest that changes in the ionisation state of the gas are causing opacity changes.  相似文献   

11.
This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs “Total solar eclipse 1999 and 2006” (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 – Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133–137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR–Terrestrial Influences, Sofia, November 24–25, pp. 69–72, 2005).  相似文献   

12.
A puzzling observation of solar wind MHD turbulence is the often seen Kolmogorov scaling of k-5/3k-5/3, even though the solar wind MHD turbulence is dominated by Alfvénic fluctuations. Recently Li et al. (2011) proposed that the presence of current sheets may be the cause of the Kolmogorov scaling. Here, using a cell model of the solar wind we examine the effect of current sheets on the power spectrum of the solar wind magnetic field. We model the solar wind as multiple cells separated by current sheets. We prescribe the spectra of turbulent magnetic field in individual cells as IK-like and examine the spectra along trajectories that cross multiple boundaries. We find that these spectra become softer and are consistent with the Kolmogorov-scaling. Our finding supports our recent proposal of Li et al. (2011).  相似文献   

13.
We present an analysis of high resolution spectra in the far-UV – UV range (∼905–2000 Å) with non-LTE, spherical, hydrodynamical, line-blanketed models, of three O-type Galactic stars, and derive their photospheric and wind parameters. These data extend previously analyzed samples and fill a gap in spectral type coverage. The combined sample confirms a revised (downward) Teff scale with respect to canonical calibrations, as found in our previous works from UV and optical spectra, and in recent works by other authors.  相似文献   

14.
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath.  相似文献   

15.
The detection of Li I lines is the most decisive spectral indicator of substellarity for young brown dwarfs with masses below about 0.06 solar mass. Due to the weakness of the Li resonance lines, it is important to be able to model precisely both their core widths and their wing profiles. This allows an adequate prediction of the mass at which Li lines reappear in the spectra of brown dwarfs for a given age, or reversely an accurate determination of the age of a cluster. We report improved line profiles and the dependence of line width on temperature suitable for modeling substellar atmospheres that were determined from new LiHe molecular potential energies. Over a limited range of density and temperature, comparison with laboratory measurements was used to validate the potential energies which support the spectral line profile theory.  相似文献   

16.
We have studied the effect of both solar magnetic polarity and the solar wind velocity on the Bz-component of the interplanetary magnetic field, IMFBz, for the minimum activity of the solar cycles 21, 22, 23 and 24. We made a statistical study of IMFBz in the first section which is considered as an extension of Lyatsky et al. (2003). They made a statistical study of IMFBz for two periods of minimum solar activity 22 and 23 related to 1985–1987 and 1995–1997 when the solar magnetic field had opposite polarity. Our results seem to be consistent with the results obtained by Lyatsky et al. (2003). We found that there is a dependence of IMFBz on the IMFBx and the solar magnetic polarity for the minimum periods of the selected four solar cycles. In addition, we found that there is a dependence of IMFBz on the solar wind velocity.  相似文献   

17.
In this paper, we discuss our first attempts to model the broadband persistent emission of magnetars within a self-consistent, physical scenario. We present the predictions of a synthetic model that we calculated with a new Monte Carlo 3D radiative code. The basic idea is that soft thermal photons (e.g. emitted by the star surface) can experience resonant cyclotron upscattering by a population of relativistic electrons treated in the twisted magnetosphere. Our code is specifically tailored to work in the ultra-magnetized regime; polarization and QED effects are consistently accounted for, as well different configurations for the magnetosphere. We discuss the predicted spectral properties in the 0.1–1000 keV range, the polarization properties, and we present the model application to a sample of magnetars soft X-ray spectra.  相似文献   

18.
19.
Transients in the heliosphere, including coronal mass ejections (CMEs) and corotating interaction regions can be imaged to large heliocentric distances by heliospheric imagers (HIs), such as the HIs onboard STEREO and SMEI onboard Coriolis. These observations can be analyzed using different techniques to derive the CME speed and direction. In this paper, we use a three-dimensional (3-D) magneto-hydrodynamic (MHD) numerical simulation to investigate one of these methods, the fitting method of  and . Because we use a 3-D simulation, we can determine with great accuracy the CME initial speed, its speed at 1 AU and its average transit speed as well as its size and direction of propagation. We are able to compare the results of the fitting method with the values from the simulation for different viewing angles between the CME direction of propagation and the Sun-spacecraft line. We focus on one simulation of a wide (120–140°) CME, whose initial speed is about 800 km s−1. For this case, we find that the best-fit speed is in good agreement with the speed of the CME at 1 AU, and this, independently of the viewing angle. The fitted direction of propagation is not in good agreement with the viewing angle in the simulation, although smaller viewing angles result in smaller fitted directions. This is due to the extremely wide nature of the ejection. A new fitting method, proposed to take into account the CME width, results in better agreement between fitted and actual directions for directions close to the Sun–Earth line. For other directions, it gives results comparable to the fitting method of Sheeley et al. (1999). The CME deceleration has only a small effect on the fitted direction, resulting in fitted values about 1–4° higher than the actual values.  相似文献   

20.
Stars that explode as Type I Supernovae (SNI) are white dwarfs with masses practically equal to the Chandrasekhar limit Mch. These white dwarfs forme either as a result of gas overflow onto a degenerate component in a binary system or due to the evolution of nuclei of the stars whose mass, on the main sequence, was 3 to 7 Mo. The masses of their nuclei are quite close to Mch. It is convenient to consider three types of stellar evolution 1) “hyperbolic”: masses of nuclei formed as a result of evolution are > Mch; such evolution ends in a Type II Supernova (SNII) outburst; 2) “parabolic” - masses of nuclei ≈ Mch, with the evolution ending in an SNI outburst; 3) “elliptical” with nuclei masses < Mch. The latter type of evolution leads to the formation of planetary nebulae and white dwarfs. A new hypothesis is suggested that explains more frequent occurrence of SNI in irregular galaxies by flashes of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号