共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了相对黄道面有一定倾角的探测器轨道设计的问题。以金星借力轨道设计为例,分析了轨道偏心率与轨道倾角增量之间的关系。根据C3匹配原理搜索了“地球-中间天体-地球”多天体交会的发射窗口。最后,设计了与地球轨道周期相等的三次地球借力轨道,该轨道倾角可以达到黄纬30°以上。理论分析及仿真结果表明:基于地球引力设计此类轨道时,应采用多天体交会方案,才能既保证地球逃逸能量低,又保证首次飞入地球影响球前轨道偏心率较大的双重指标;同时应采用多次地球借力方案,该方案具有每次借力后轨道偏心率逐渐减小的特点,当其减小到零时,再次借力后轨道倾角不会继续增加。 相似文献
2.
The accurate prediction for aerodynamic drag of spacecraft in very low Earth orbit(VLEO)is a fundamen-tal prerequisite for aerospace missions in VLEO.The presen... 相似文献
3.
4.
5.
充分利用各种对地观测技术,从信息化的角度支持防灾救灾行动,已被列入政府的重要工作内容。总结前一阶段的经验,从灾前、灾期、灾后的全过程系统地考虑如何充分发挥卫星对地观测技术的防灾救灾作用,是一个值得研究的问题。文章从防灾预案、灾期救援和灾后重建三个方面研究了卫星对地观测技术在防灾救灾全过程中发挥作用的技术途径。 相似文献
6.
在雷达管制条件下,随着飞行流量的逐年增加,要求管制员对航空器的调配精度也越来越高,使得管制员对航空器航行诸元的控制也逐渐由少到多,由粗到细。这种要求的转变在区域管制室由程序管制向雷达(监控)管制的过渡过程中显得尤为明显。过去那种简单、粗糙的以阶梯上升/下降为主的 相似文献
7.
8.
In fulfilling the National Aeronautics and Space Administration's (NASA) responsibility to encourage the fullest commercial use of space the Space Product Development (SPD) Program, within the Microgravity Research Program Office (MRPO) located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is managing an organization of Commercial Space Centers (CSC's) that have successfully employed methods for encouraging private industries to exploit the benefits of space-based research. Unique research opportunities of the space environment are being made available to private industry in an effort to develop new, competitive products; create jobs; and enhance the country's quality of life. Over 200 commercial research activities have been conducted in space by the CSC's and their industrial partners during the last several years. The success of this research is evidenced by the increasing amount of industrial participation in commercial microgravity research and the potential products nearing marketability. 相似文献
9.
由于质量矩导弹是一个具有非线性和模型不确定性的多变量系统,为了进一步提高控制系统的鲁棒性,对三滑块质量矩导弹进行了鲁棒控制系统的研究。以所建立的质量矩导弹数学模型为基础,通过对模型合理的简化,得到一个耦合的非线性动力学系统,考虑到质量矩导弹的鲁棒性要求和三个滑块的协调控制问题,在混合灵敏度控制的基础上,采用H∞控制理论对导弹进行姿态控制系统的研究,仿真结果验证了这种方法的有效性。 相似文献
10.
To date, NASA's “Near Earth Object Program” has discovered over 5500 comets and asteroids on trajectories that bring them within “the neighborhood” of Earth's orbit. Nearly 1000 of these objects are classified as “potentially hazardous,” passing within 0.05 astronomical units of Earth's orbit. Discovery rates of such threatening bodies increase each year. Given this multitude of threats, in addition to evidence that the planet has absorbed many impacts over its history, it is reasonable to assume that another object will strike the Earth at some point in the future. Consequently, researchers have studied and proposed several mitigation techniques for such an occurrence. This study seeks to determine how effectively the attachment of a tether and ballast mass would divert the trajectory of such threatening objects. Specifically, the study analyzes the effects over time of such a system on objects of varying orbital semimajor axis and eccentricity, using various tether lengths and ballast masses. It was determined that the technique is most effective for NEOs with high eccentricity and small semimajor axis, and that system performance increases as tether length and ballast mass increase. 相似文献
11.
12.
13.
14.
This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome. 相似文献
15.
16.
17.
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged. 相似文献
18.
At the Earth Observation Summit in 2003 at the US Department of State, environmental ministers from more than 30 countries joined three US cabinet secretaries to plan the creation of a system for international sharing of data about the atmosphere, the oceans and the land. The meeting grew in part out of commitments by leaders at a G-8 summit meeting in France to build an integrated global earth environmental monitoring system. Opportunities and problems both figure prominently in implementation of the Summit's vision. The challenges include who pays for infrastructure, training, and administration; whether to control data access; how to include the private sector; and whether problems of collective action will plague the effort. 相似文献
19.
E. A. Gonzaga 《Cosmic Research》2010,48(5):459-466
The planet Earth has endured unwelcome “visitations” of space rocks many times. NASA and agencies of other nations have proposed concepts on how asteroids, in possible collision with planet Earth, can be diverted. These methods range from impulsive techniques using explosives, conventional and nuclear, to the slow nudging action of a spacecraft with powerful thrust. A methods not described elsewhere in any research, as far as the author knows, is presented in this paper. The methods of electrostatics will be employed to show how the new deflection concept can be developed to avoid asteroid collision with Earth. 相似文献
20.
The problem of optimal control is considered for the motion of the center of mass of a spacecraft in a central Newtonian gravitational field. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems. Both the variants have a quaternion variable among the phase variables. In the first variant this variable characterizes the orientation of an instantaneous orbit of the spacecraft and (simultaneously) the spacecraft location in this orbit, while in the second variant only the instantaneous orbit orientation is specified by it. The suggested equations are convenient in the respect that they allow the general three-dimensional problem of optimal control by the motion of the spacecraft center of mass to be considered as a composition of two interrelated problems. In the first variant these problems are (1) the problem of control of the shape and size of the spacecraft orbit and (2) the problem of control of the orientation of a spacecraft orbit and the spacecraft location in this orbit. The second variant treats (1) the problem of control of the shape and size of the spacecraft orbit and the orbit location of the spacecraft and (2) the problem of control of the orientation of the spacecraft orbit. The use of quaternion variables makes this consideration most efficient. The problem of optimal control is solved on the basis of the maximum principle. Several first integrals of the systems of equations of the boundary value problems of the maximum principle are found. Transformations are suggested that reduce the dimensions of the systems of differential equations of boundary value problems (without complicating them). Geometrical interpretations are given to the transformations and first integrals. The relation of the vectorial first integral of one of the derived systems of equations (which is an analog of the well-known vectorial first integral of the studied problem of optimal control) with the found quaternion first integral is considered. In this paper, which is the first part of the work, we consider the models of motion of the spacecraft center of mass that employ quaternion variables. The problem of optimal control by the motion of the spacecraft center of mass is investigated on the basis of the first variant of equations of motion. An example of a numerical solution of the problem is given. 相似文献