首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the analysis of a strong solar flare X1.6/2B on October 19, 2001 in the active region 9661, accompanied by a coronal mass ejection (CME) of the halo type, a topological model of development of this solar event is suggested. The model considers a unified process of development of CME and a chromosphere flare. According to the model, this process has a common source of energy supply: the turbulent current layer lying between the arcade of flare loops and the surface of CME going away. The structures on the ends of flare bands (SEFB) represent in this model chromosphere feet of the system of large-scale coronal magnetic arches at the initial stage of the dynamic processes whose evolution results in CME. Peripheral structures (PS) of the flare (elongated double bright emission strips beyond the limits of the active region) are interpreted as chromosphere bases of magnetic field lines that form an external shell (braid) of the CME at the late stage of the flare.  相似文献   

2.
The coronal mass ejections (CME) with small angular dimensions (d ≤ 10°) have the simplest form, much simpler than large CME. This fact simplifies the problem of analyzing the CME structure and studying their origin. On the basis of the analysis of the LASCO C2 (SOHO) data, we show in this paper that the motion of a CME having small dimensions proceeds within a magnetic tube (a ray with increased brightness) of the streamer belt and leads to an “explosion-like” increase in the angular dimensions (rapid expansion) of the tube. A hypothesis is put forward that a small CME represents a “plasmoid” (a plasma bunch bounded in space, with its own magnetic field) thrown into the base of the magnetic tube and moving along it away from the Sun.  相似文献   

3.
太阳高能粒子(SEP)事件的定量数值预报是空间态势感知的重要方面之一.SEP事件主要来自于日冕物质抛射(CME)所驱动的激波扩散加速(DSA).文章在三个有关模型的基础上,结合1 AU处卫星的太阳风观测参数和日冕仪的CME观测参数,建立了一套可用于预报SEP事件的数值方法.利用该方法对一次SEP实例进行数值模拟,并将模...  相似文献   

4.
当太阳活动频繁,特别是有耀斑爆发或者日冕物质抛射驱动的激波时,经常能够观察到高能粒子(能量从几十keV到几十MeV)通量突然增加,这种由太阳活动产生的高能粒子事件被称为太阳高能粒子事件。文章研究了耀斑和日冕物质抛射产生的两类高能粒子事件,重点讨论了高能粒子横越磁力线的扩散对粒子在行星际空间传播过程中所起到的作用,给出了对于不同扩散系数条件的数值模拟结果。  相似文献   

5.
Formation and motion (at the initial stage) of six limb CMEs detected in the period June 2010 to June 2011 are investigated using the high-resolution data of the PROBA2 and SDO spacecraft combined with the data of SOHO/LASCO coronagraphs. It is demonstrated that several loop-like structures of enhanced brightness originate in the region of CME formation, and they move one after another with, as a rule, different velocities. These loop-like structures in the final analysis form the frontal structure of CME. Time dependences of the velocity and acceleration of the ejection’s front are obtained for all CMEs under consideration. A conclusion is drawn about possible existence of two classes of CMEs depending on their velocity time profiles. Ejections, whose velocity after reaching its maximum sharply drops by a value of more than 100 km/s and then goes over into a regime of slow change, belong to the first class. Another class of CMEs is formed by ejections whose velocity changes slowly immediately after reaching the maximum. It is demonstrated that the CME’s angular dimension increases at the initial stage of ejection motion up to a factor of 3 with a time scale of doubling the angular size value within the limits 3.5–11 min since the moment of the first measurement of this parameter of an ejection. For three CMEs it is shown that at the initial stage of their motion for a certain time interval they are stronger expanded than grow in the longitude direction.  相似文献   

6.
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.  相似文献   

7.
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances 相似文献   

8.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   

9.
In order to predict space weather effects, solar flares are often used as precursors of magnetic storms on the Earth. In particular, possible relation between the solar flare importance and magnetic storm intensity is discussed in some papers. However, published results contradict each other. We compare the published results on the flare-storm dependence and discuss possible causes of this disagreement: (1) different intervals of observation, (2) differing statistics, and (3) different methods of identification of events and their comparison. Our analysis has shown that the fact of occurrence and the magnitude of a geomagnetic storm cannot be determined, generally, using only the solar flare importance. However, analyzing additional information on the coronal mass ejection (CME), associated with the geomagnetic storm, one can offer an algorithm for the storm magnitude prediction on the basis of flare importance.  相似文献   

10.
In this paper we continue the analysis of the influence of solar and interplanetary events on magnetic storms of the Earth that was started in [9, 10]. Different experimental results on solar-terrestrial physics are analyzed in the study and the effects are determined that arise due to differences in the methods used to analyze the data. The classifications of magnetic storms by the K p and D st indices, the solar flare classifications by optical and X-ray observations, and the classifications of different geoeffective interplanetary events are compared and discussed. It is demonstrated that quantitative estimations of the relationships between two types of events often depend on the direction in which the events are compared. In particular, it was demonstrated that the geoeffectiveness of halo CMEs (that is, the percentage of Earth-directed coronal mass ejections that result in geomagnetic storms) is 40–50%. Higher values given in some papers were obtained by another method, in which they were defined as the probability of finding candidates for a source of geomagnetic storms among CMEs, and, strictly speaking, these values are not true estimates of the geoeffectiveness. The latter results are also in contrast with the results of the two-stage tracing of the events: first a storm—an interplanetary disturbance, and then an interplanetary disturbance—a CME.  相似文献   

11.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

12.
Kaportseva  K. B.  Shugay  Yu. S. 《Cosmic Research》2021,59(6):537-537
Cosmic Research - An Erratum to this paper has been published: https://doi.org/10.1134/S0010952521120017  相似文献   

13.
On the ground the vertical directions "up" and "down" have significance in relation to the strategy for avoiding collision of the skull with the planet. Voluntary acts to this end may be based on the experienced result of reflexly generated motor commands. Relevant receptors lie in the otolith organs of the labyrinth, but the head is seldom steady in waking life. A revised scheme of labyrinth reflexes on the limbs--"downhill limbs extend"--replaces the classical scheme of Magnus. Interactions with neck reflexes according to this scheme serve to stabilize the trunk. In an orbiting spacecraft the pattern of afferent signals from the labyrinth differs from that on the ground, and predictions based on the new scheme are to be tested in the project "Operation Push-Pull" proposed for ESRO's Spacelab. Other activities of the Council of Europe's Working Party on Aerospace Physiology and Medicine are briefly described.  相似文献   

14.
The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.  相似文献   

15.
《Acta Astronautica》2009,64(11-12):1376
  相似文献   

16.
通向月球的路是漫长的。从现在起,有针对性地对空间探测理论与技术进行研究是非必需的。本文对月球探测轨道作一介绍,利用借力飞行和WSB转移,减少轨道机动所需的△V,从而减少发射费用,这对支持长期的持续的空间探测是非常必要的。离子推进推力器是空间探测用推进器的理想选择,应继续进行研究,并进行飞行试验验证。  相似文献   

17.
为适应当前多型号并举,研制和生产并重,生产数量大幅度增加的航天产品生产形势,航天科技集团在召开航天型号批生产工作会后,下发了《关于加强航天装备批生产的若干意见》(试行)。意见中规定:“要按照工艺标准和规范,做好工艺审查,制定合理、完善、可操作、可检测的工艺规程,用于指导批生产,并及时做好批生产工艺定型(鉴定)工作。”航天科技集团工艺专家组为调查贯彻落实情况进行了调研,发现在航天型号产品工艺定型(鉴定)问题上还存在很多不同的认识和做法,“及时做好工艺定型(鉴定)”的工作在有些地方没有得到落实。本文…  相似文献   

18.
19.
20.
水客 《航天员》2009,(4):62-63
北京时间2009年6月19日凌晨5点,NASA发射两颗卫星探月。这是美国“重返月球”计划的第一步。美国是最先探索月球的国家之一。从卫星“绕月”到“阿波罗”飞船首次登月,再到如今“重返月球”计划中建立永久性月球基地,美国的月球探索已进入更深屡次。月球,田其独特的空间位置,被美国视为太空探索的重要跳板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号