首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the IRI values of Te, Ne, Ti, O+, H+, He+, O2+, and NO+ with AE-C values, obtained from the Goddard Comprehensive Ionosphere Database (GCID), composed of data from the satellites, AE-B, OGO-6, ISIS-2, AE-C, AE-D, and AE-E. O+ - H+ transition levels were derived from the IRI and AE-C altitude profiles. Some discrepancies were found between IRI and the AE-C data. The IRI electron density was found to be about a factor of 2 higher than the data. The H+ composition agreed best among the IRI ions, with an average AE-C/IRI ratio of 1.05. The temperatures of both electrons and ions agreed quite well: the average ratios of AE-C/IRI was found to be .99 for electrons and 1.17 for ions.  相似文献   

2.
Instead of the existing analytic distribution of the electron temperature profile used in the IRI a two linear-segment profile is proposed. This is simple to handle and can readily be matched to different experimental data from ground-based, rocket and satellite measurements. It is shown how from such data the entire profile can be determined in the height range from 120 km up to 1500 km, which includes upper heights not yet covered by the IRI.  相似文献   

3.
4.
In order to improve its representation of the dependence on time and space of the ionospheric parameters, the International Reference Ionosphere ought to take account of realistic sunrise and sunset conditions in the upper atmosphere. Such input is needed for quite a few parameters for which only day and night values were taken as input in the present IRI. Of the 24 hours of a day, true nighttime comprises a fraction of 37% at an altitude of 300 km and only 26% at 1000 km. In order to demarcate the day/night/day transition periods, the present IRI proposes solar zenith angles of 98° to 120°, depending on the altitude.Electron density profiles, obtained during these periods, have been studied with two data sources: 10 vertical-incidence sounding data observed during the meridional voyages of the research vessel “Akademik Korolev” in the Pacific Ocean; 2° data observed at the South Pole. It is shown that the height of the turning point in the sub-peak F2-layer profile and also the corresponding minimum scale height appear to be independent of latitude, season and index of geomagnetic activity. A method is discussed by which the IRI electron density profiles might be improved, in particular during these hours.  相似文献   

5.
6.
根据夜间135.6nm大气辉光光强与F2层峰值电子密度NmF2平方成正比的物理机制,在前期夜间135.6nm气辉辐射激发模型研究的基础上建立了峰值电子密度的反演算法,把全球经纬度分成若干格点,每个格点的电离层及中性成分信息分别由IRI2000和MSISE90提供,将电离层及中性成分廓线输入夜气辉辐射激发模型,计算每个格点135.6nm气辉的辐射强度,然后将各个格点的135.6nm气辉辐射强度与电离层廓线输入的NmF2平方拟合得到气辉强度与NmF2的转换因子.利用此方法可获得不同地方时、季节和太阳活动周期的转换因子组成查算表,进而根据实际探测的135.6nm气辉辐射强度反演相应时空的NmF2.最后对该算法的反演误差进行了综合分析,为该算法适用的时空特性提供重要理论支撑.   相似文献   

7.
The amount of measured temperature data accumulated in recent years allows and asks for improvement and refinement of the rather crude temperature models employed in the International Reference Ionosphere 1979. By combining the mission-oriented models by BRACE, THEIS /2/ for the AE-C satellites and by SPENNER, PLUGGE /1/ for the AEROS-A satellite, a much better diurnal and latitudinal reliability can be obtained. It is also suggested that IRI should have the option to make use of the strong anti-correlation between electron temperature and density in cases where actual measured densities are available. For daytime condition, incorporation of a density dependent model into IRI can significantly enhance the prediction quality of IRI in the altitude range 300 to 600 km.Furtheron, the solar activity dependence of the electron temperature and of the density-temperature-relation are investigated by comparing the low solar activity models with more recent AE-C and -DE data.  相似文献   

8.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

9.
The International Reference Ionosphere (IRI) empirical model provides valuable data for many fields including space and navigation applications. Since the IRI model gives the ionospheric parameters in the altitude range from 50?km to 2000?km, researchers focused on the IRI-PLAS model which is the plasmasphere extension of the IRI model. In this study, Total Electron Content (TEC) prediction performance of the IRI-PLAS model was examined at a global scale using the location of globally distributed 9 IGS stations. Besides the long term (01.01.2015–31.12.2015) behavior of the model, TEC predictions during the equinox and solstice days of 2014–2017 were also tested. IRI-PLAS-TEC values were examined in comparison with GPS-TEC data. Hourly interval of yearly profile exhibits that when the geomagnetic and solar active days are ignored, differences between IRI-PLAS-TEC and GPS-TEC are rather small (~2–3 TECU) at stations in the northern hemisphere, generally ~4–5 TECU level at the southern hemisphere stations and reaching above 10 TECU for few hours. While the IRI-PLAS-TEC generally overestimates the GPS-TEC at southern hemisphere stations during quiet days, the model-derived TEC underestimates GPS-TEC during solar active days. IRI-PLAS-TEC and GPS-TEC values exhibit similar trend for the equinoxes 21 March and 23 September which refer equivalent conditions.  相似文献   

10.
The new IRI formula, as accepted at the 1983 Stara Zagora Workshop, prescribes the use of Epstein functions for reproducing logarithmic electron density profiles. In this paper we discuss solutions which might be applicable to the lower ionosphere. The experimental data base is briefly reviewed. It appears that the stratification near 80 km must be accepted as a regular feature of the daytime lower ionosphere. The C-layer problem is left open. In order to reproduce such profiles, one needs three LAY-functions. Examples show that the weighted sum of these does very well represent experimental profiles, the amplitudes being determined by a least square fit. For profile synthesis (as in IRI) a least square determination of the three amplitudes, admitting four linear conditions, is proposed.  相似文献   

11.
Ion composition of the D region is principally characterized by the existence of two distinct regions of predominant molecular ions and predominant cluster ions, separated from each other by a rather sharp ‘transition height’, which is proposed to be included in the IRI as an additional parameter, supplementing the electron density models. It is possible to predict the position of this ‘transition height’ at a given place and time with the aid of a simplified ion chemistry scheme which is shown to be satisfactorily compatible with experimental ion composition data available in the literature. Our suggested method of this prediction makes use of the (IRI or experimental) electron density profile at the location and season in question, together with an effective clustering rate coeeficient calculated from corresponding temperature and density profiles taken from a suitable reference model of the neutral atmosphere.  相似文献   

12.
Incoherent scatter measurements are of great value for establishing and improving the IRI. This holds, in particular, for the topside electron density profile, for the valley occurring under certain conditions between regions E and F, and for the electron and ion temperature profiles. Extension in time of the observations could be very helpful for future work on IRI.  相似文献   

13.
太赫兹大气临边探测仪(TALIS)是中国正在预研的第一台THz频段的临边探测仪,主要用于高精度、高分辨率的大气遥感测量.TALIS的观测目标主要包括大气温度、大气压强、大气成分(例如H2O,O3,HCl,ClO,N2O,HNO3等)的垂直分布以及长期变化趋势.由于TALIS的频段覆盖了许多重要的吸收谱线,其观测数据中包含大气风的多普勒信息,因此可以用于反演中高层风的廓线.本文针对TALIS视线多普勒风的观测进行仿真,利用辐射传输模型(ARTS)评估了TALIS测风的潜力和相应的反演精度.结果表明,TALIS的118GHz谱仪具有较好的测量精度,在70km处的精度为12m·s-1.183GHz,633GHz和658GHz谱仪也有一定的测量信息,反演精度分别为19m·s-1(60km),19m·s-1(50km),16m·s-1(50km).TALIS有一个候选的测风谱仪位于655GHz频段,其在55km处的反演精度为11m·s-1.此外,虽然降低谱分辨率能有效提高系统灵敏度,但并不能提高反演精度,需要通过降低系统噪声来提高测风的精度.   相似文献   

14.
电离层参数f0F2的预报是电离层研究的一个重要方向.本文选取2011年北京、长春、青岛和苏州四个常规观测站的f0F2数据,分别采用卡尔曼滤波、自相关分析法和国际参考电离层模型(IRI)对f0F2实施短期预报(提前1h预报),并通过与实际观测数据的对比,对三种方法预报f0F2的性能进行了比较.研究结果表明,在磁平静时期,采用卡尔曼滤波方法进行f0F2预报的均方误差为0.532MHz,相对误差8.11%,比国际电离层参考模型的均方误差和相对误差分别降低1.47MHz和14.58%;采用自相关分析方法进行f0F2预报的均方根误差为0.967MHz,相对误差11.46%,比国际电离层参考模型的均方误差和相对误差分别降低1.035MHz和11.23%.比较结果说明二者对f0F2短期预报的精度相对于国际电离层参考模型均有大幅提升.对磁暴期间三种方法的预测性能做了进一步比较,试验结果表明卡尔曼滤波短期预报性能总体上优于自相关分析法,这为f0F2短期预报的方法选择提供了一定指导.   相似文献   

15.
利用2010年6月3日子午工程首次气象火箭探测的温度和风场数据,采用矢端曲线法分别从平流层(20~50km)和对流层(0~15km)廓线提取了海南火箭发射场上空准单色惯性重力波参数.火箭探测的平流层和对流层两个准单色惯性重力波分别向上和向下逆风传播,固有周期为20.1h和22.4h,垂直波长为9.5km和4.0km,水平波长为2900km和753km,垂直群速度cgz为0.0887m·-1和0.0298m·-1,水平群速度cgh为12.7m·-1和3.65m·-1,λhz为305:1和188:1,cgh/cgz为143:1和122:1.   相似文献   

16.
对火星大气进行连续高分辨率观测是研究火星大气物理和化学过程的重要手段.太赫兹临边探测技术通过测量火星大气中的风和光化学循环中的重要气体(CO,O3,H2O,H2O2等)提高对火星的认知.针对火星大气遥感的探测需求,分析了300~1000GHz频段的频谱特征.针对探测卫星对于载荷质量、功耗等参数的要求,提出一个560GHz频段的火星大气太赫兹临边探测仪设计方案,并利用辐射传输模型ARTS中的行星工具箱进行仿真.仿真结果显示:火星大气温度的反演精度优于4K,其中45km高度以下优于2K;H2O丰度的反演精度在90km以下优于50%,30km以下优于2%;H2O2的反演精度在40km以下优于50%;O3的反演精度在50km以下优于60%;大气风速度的反演精度在65km以上优于5m·s-1,最高可以达到2m·s-1.研究结果表明,利用太赫兹波段的吸收谱线可以很好地探测火星大气中各成分的丰度、变化趋势以及中高层大气的风,可为后续火星表面及大气探测提供参考.   相似文献   

17.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

18.
The Ca K line has been measured regularly nearly every month since 1974 at Kitt Peak. It is well known that the K1 component of the Ca K line is formed in the temperature minimum region (TMR) of the solar atmosphere. Our study of the data of CaII K profiles over two solar cycles indicates that both in full disc integrated spectra and in center disc spectra, the distance between the red K1 and the blue K1 of the profiles and its average intensity show periodic variations. But the variation for the full disc integrated spectra fluctuates in the same way as the sunspot number does, while that for the center disc spectra has a time delay with respect to sunspot number. Non-LTE computations yield a cyclic temperature variation of about 17 K of the TMR in the quiet-Sun atmosphere and a cyclic variation of about 15–20 km in the height position of the TMR.  相似文献   

19.
20.
KSR-II, a two-stage sounding rocket of KARI was launched successfully at the Korean Peninsula on June 11, 1998. The apogee of the rocket was 137 km. For the ozone measurement, 8-channel UV and visible radiometers were onboard the rocket. The rocket measured an in situ stratospheric and mesospheric ozone density profile over Korea during its ascending phase using the radiometer and transmitted the data to ground station in real time. The maximum ozone density occurs near 25 km. Retrieved profile has a random error (1σ) of approximately 15% for altitude below 20km, 7% between 20-50 km and 10% greater than 50 km. The retrieved data were compared with Dobson spectrophotometer, ozonesonde, and HALOE onboard the UARS. Our results are in reasonable agreements with others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号