首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
RP-3航空煤油模拟替代燃料的化学反应简化机理   总被引:1,自引:6,他引:1       下载免费PDF全文
曾文  李海霞  马洪安  梁双  陈保东 《推进技术》2014,35(8):1139-1145
为了建立能适用航空发动机燃烧过程反应动力学计算的国产RP-3航空煤油的化学反应机理,在化学激波管中对国产RP-3航空煤油的着火特性进行了实验测量,获得了多工况下该航空煤油的着火延迟时间。根据RP-3航空煤油的化学组成及物理特性,提出了由正癸烷、甲苯与丙基环己烷(体积百分比为0.65/0.1/0.25三种组份组成的模拟替代燃料,并形成了该替代燃料的化学反应详细机理。采用敏感性分析方法,对该详细反应机理进行了简化,形成了该替代燃料的简化反应机理。采用该简化机理对该替代燃料多工况下的着火特性进行了数值模拟,并与实验数据以及详细机理的计算结果进行了对比分析。结果表明,在不同压力与当量比下,RP-3航空煤油着火延迟时间的对数与着火温度的倒数呈直线关系,并且随着火温度、着火压力的升高以及当量比的降低,RP-3航空煤油着火延迟时间逐渐缩短;同时,在各工况下采用该简化机理计算得到的该替代燃料的着火延迟与详细反应机理的计算结果以及RP-3航空煤油着火延迟的实验值吻合良好。  相似文献   

2.
RP-3航空煤油模拟替代燃料的化学反应详细机理   总被引:3,自引:4,他引:3  
在化学激波管中对RP-3航空煤油的着火特性进行了实验测量,获得了多工况下RP-3航空煤油的着火延迟时间.根据RP-3航空煤油的化学组成及物理特性,提出了由体积分数分别为0.65,0.1,0.25的正癸烷、甲苯与丙基环己烷3种组分组成的模拟替代燃料,并形成了该模拟替代燃料的化学反应详细机理.采用该化学反应详细机理对该模拟替代燃料在化学激波管中多工况下的着火特性进行了数值计算,并与实验数据进行了对比分析.结果表明:在不同压力与当量比下,RP-3航空煤油着火延迟时间的对数与着火温度的倒数呈线性关系,并且随着火温度与压力的升高以及当量比的降低,着火延迟时间逐渐缩短;同时,在各工况下采用该化学反应机理计算得到的该模拟替代燃料着火延迟时间与RP-3航空煤油着火延迟时间的实验值吻合良好.   相似文献   

3.
RP-3航空煤油燃烧特性及其反应机理构建综述   总被引:1,自引:0,他引:1  
目前耦合航空煤油多步燃烧反应机理的数值模拟计算已引起学者们的重视,燃烧反应机理的构建已成为研究热点。详细介绍了国内外关于航空煤油模拟替代燃料的选取、化学反应动力学模型构建和简化、着火延迟时间和层流燃烧速度等的实验规律。依据国外研究进展,指出了中国在国产RP-3航空煤油燃烧反应机理研究方面应从基础研究做起,全方位、多维、立体地合作开展相关研究,主要包括:国产RP-3航空煤油化学动力学模型的建立、低温高压工况条件下航空煤油与模拟替代燃料的基础实验研究与模型燃烧室研究,以期丰富相关研究成果,推进航空发动机的高质量发展。  相似文献   

4.
RP-3航空煤油燃烧的详细和简化化学动力学模型   总被引:11,自引:10,他引:11  
建立了一个包含109组分和946个基元反应的煤油燃烧详细化学反应动力学模型,采用"准稳态"假设方法来对其进行简化,得到了包含22组分18步总包反应的简化反应模型.通过与典型实验结果和文献计算结果对比可以看出,简化模型具有较高的准确性,能够准确反映出RP-3航空煤油点火特性,能够用来对煤油燃烧问题进行准确的数值模拟.   相似文献   

5.
为研究小分子燃料对RP-3航空煤油燃烧的影响,选择合理的RP-3航空煤油替代燃料详细燃烧模型开展工作,该模型能够精确预测RP-3航空煤油和小分子燃料的燃烧特性。以六种重要的小分子燃料H2,CH4,C2H4,C2H6,C3H6和C3H8分别与RP-3航空煤油按1:5的比例(摩尔分数)掺混形成的六种混合燃料(Blended Fuel)为研究对象。在当量比为1.0,压力分别为0.1 MPa和1 MPa下系统模拟了RP-3航空煤油及六种混合燃料在高温下的燃烧特性,分析了各种混合燃料的自点火、燃尽时间、绝热火焰温度、熄火温度、组分浓度变化,并结合ROP(Rate of Production)分析方法,分析了小分子燃料对OH自由基生成速率的影响。结果表明,C2H4将RP-3航空煤油的点火延迟时间缩短了近4.6%;C3H6则将RP-3航空煤油的点火延迟时间推后了8.4%;C2H4和H2对RP-3航空煤油的快速点火和稳定燃烧有着积极的作用,其中C2H4的作用最为突出。  相似文献   

6.
真实航空燃料通常包含几十至上百种组分,直接构建其化学反应动力学模型十分困难。本文利用官能团相似法(SCFG),结合实测RP-3航空煤油组分比例,提出了RP-3四组分模型替代物。利用流动反应器,获得了温度为550~1150K,压力为0.1 MPa下RP-3热解数据,基于化学杂化方法 (Hybrid Chemistry),构建了以真实RP-3为单一原始组分的航空煤油化学反应动力学模型(XJTURP3-2021),模型得到宏观点火延迟、层流火焰速度以及微观组分浓度系统验证。基于误差传递的直接关系图法(DRGEP)和全局敏感性分析(FSSA)对模型进行简化,获得含41种组分、212个基元反应的RP-3简化模型(XJTURP3r-2021)。与详细模型和实验数据对比发现,XJTURP3r-2021能较好地复现热力边界对RP-3基础燃烧特征影响规律,为解决CFD仿真对反应源项初始组分数量约束和计算精度固有矛盾提供新思路。  相似文献   

7.
一种新的RP-3航空煤油模拟替代燃料   总被引:7,自引:2,他引:5  
为了遴选出符合RP-3航空煤油物理与化学特性的模拟替代燃料,综合分析了RP-3航空煤油的物理与化学特性。针对其物理与化学特性,确定了RP-3航空煤油模拟替代燃料的遴选指标(包括摩尔质量、氢碳比、十六烷值与低热值)。针对遴选指标,提出了由正癸烷、正十二烷、异十六烷、甲基环己烷及甲苯等五种组分组成的RP 3航空煤油模拟替代燃料,并对该模拟替代燃料中各组分的摩尔分数进行了优化。同时,对比分析了不同温度下该模拟替代燃料与RP 3航空煤油的密度与运动黏度。结果表明,当该模拟替代燃料中正癸烷、正十二烷、异十六烷、甲基环己烷及甲苯的摩尔分数分别为14%、10%、30%、36%与10%时,该模拟替代燃料的摩尔质量、氢碳比、十六烷值与低热值与RP 3航空煤油的相应数据非常吻合。同时,不同温度下该模拟替代燃料的密度与运动黏度变化趋势与RP-3航空煤油吻合较好。   相似文献   

8.
刘宇  曾文  马洪安  陈保东 《推进技术》2016,37(9):1742-1751
为了揭示可燃小分子气体H2添加对RP-3航空煤油着火特性的影响,采用激波管实验装置对RP-3航空煤油的着火特性进行了实验测量,获得了多工况下RP-3航空煤油的着火延迟时间。以RP-3航空煤油的正癸烷、甲苯和丙基环己烷三组分模拟替代燃料的燃烧反应机理为基础,构建了RP-3/H2混合燃料的Zeng-Jachimowski燃烧反应机理,并对该机理进行了验证。采用该机理对RP-3/H2混合燃料多工况下的着火延迟时间进行计算与分析,结果表明:Zeng-Jachimowski机理可以较好预测高温条件下RP-3/H2混合气着火特性;当H2添加比小于70%时,着火延迟时间随H2添加缓慢减小,当H2添加比大于90%时,RP-3航空煤油/氢气混合气活性显著提升,着火延迟时间随H2添加急剧减小;通过对H,OH和O活性自由基的浓度及H自由基生成速率ROP分析解释了H2添加对RP-3航空煤油着火延迟时间的非线性影响。  相似文献   

9.
RP-3航空煤油3组分模拟替代燃料燃烧反应机理   总被引:1,自引:3,他引:1  
提出了一种包括65%正癸烷、10%甲苯与25%丙基环己烷3组分的RP-3航空煤油模拟替代燃料的燃烧反应机理,该机理由150种组分和591个基元反应组成.采用该燃烧反应机理对RP-3航空煤油模拟替代燃料在激波管和定容燃烧弹中的着火与燃烧特性进行数值模拟,并与相应工况实验数据进行对比分析.通过与RP-3航空煤油单组分正癸烷模拟替代燃料的燃烧反应机理进行对比分析发现:正癸烷、甲苯与丙基环己烷3组分替代燃料的燃烧反应机理对着火延迟时间的计算偏差能够控制在5%以内,对层流燃烧速度的计算偏差能够控制在10%以内,计算值明显优于正癸烷单组分替代燃料;进一步采用敏感性分析方法对3组分模拟替代燃料的燃料反应机理进行了适当修正,修正后机理对层流燃烧速度的计算偏差由10%提高到5%以内,能够更好预测所研究参数下的RP-3航空煤油的着火延迟时间和层流燃烧速度.   相似文献   

10.
王慧汝  金捷  柳杨 《航空动力学报》2011,26(7):1471-1479
基于可实现的 k-ε湍流模型、颗粒随机轨道模型、火焰面模型和航空煤油详细化学反应机理对模型燃烧室内两相燃烧流场进行了数值模拟.其中详细反应机理由替代燃油(80%质量分数的正癸烷,20%质量分数的1,2,4-三甲基苯)的反应机理和NOx的反应机理组合而成.通过与实验数据的比较,考察采用该详细化学反应机理的火焰面模型模拟RP-3航空煤油燃烧流场的准确性,特别是污染物排放计算的精度.结果表明:稳态火焰面模型模拟的温度场和CO2生成量与实验数据吻合较好,而预测的NO排放量与实验值偏差较大;非稳态火焰面模型显著提高了NO的预测精度,在工况1(来流马赫数为0.16,进口温度为537K,油气比为0.0048,常压)条件下与实验数据吻合较好,但在工况2 (来流马赫数为0.155,进口温度为523K,油气比为0.010,常压)条件下仍过高估计了NO的排放量.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号