首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
针对基于并联机构的空间精密跟瞄Hexapod平台的大行程、高性能要求,通过对现有主动元件的分析,从作动器角度研制了以滚珠丝杠作动器为宏动部分、压电作动器为微动部分的大行程高频响精密复合作动器,测试了复合作动器的行程、开环定位精度及动态特性,以dSPACE半物理仿真系统为核心建立了实验系统,进行了复合作动器单自由度精确定位实验和振动主动控制实验.由结果可知,复合作动器作动行程超过50mm、经微动部分补偿后的整体定位误差小于1μm、正弦持续扰动下采用自适应滤波ADC(Active Disturbance Canceller)方法使振幅下降90%以上.结果表明,将此复合作动器应用于空间高稳定精密跟瞄Hexapod平台是完全可行的.   相似文献   

2.
面向在轨组装的分块式空间望远镜主镜高精度合像与稳像调整问题,设计一种音圈电机驱动的六自由度子镜主动调整机构,并考虑星体柔性附件和角动量装置等微振动源影响提出一种分散式力控制方法,完成镜面位姿的高精度控制,实现分块镜合像与振动一体化控制.本文先推导了像差与子镜位姿参数之间的光学灵敏度矩阵形式,以Gram-Schmidt正交化方法得到了正六边形孔径的Zernike像差多项式;建立分块式空间望远镜整星动力学模型,基于音圈电机设计六自由度子镜主动调整机构,并提出涡流传感器阵列的位姿解算方法;提出在轨组装后的分块式空间望远镜控制方案,针对子镜的TTP(tip, tilt, piston)误差与微振动干扰,利用子镜位姿目标量与作动器期望长度的解析式,设计带有前馈补偿和速度反馈的分散式音圈电机控制器用于电机输出力和子镜位姿调整,实现合像与振动控制;仿真验证并计算成像质量评价指标,结果表明提出的控制方法可实现分块式空间望远镜高精度合像与稳像调整,调整速度快、精度高、振动衰减强.  相似文献   

3.
航天器高精度稳定平台要求飞轮在工作转速范围内的干扰力尽可能低,因此需要对飞轮本身固有的扰振力进行有效抑制,一般对机械飞轮采用被动振动隔离方法,而对磁悬浮飞轮采用主动振动控制方法.分别介绍机械飞轮和磁悬浮飞轮的微振动特性,分析其扰振产生的原因,阐述振动隔离以及振动控制原理,并通过测试系统对现阶段振动抑制效果进行了说明.  相似文献   

4.
针对空间索网天线型面振动控制中部分作动器故障影响天线型面精度的问题,基于天线动力学模型设计一种模糊自抗扰容错控制方法。首先,建立天线型面的振动动力学模型,包括天线振动动力学模型、形状记忆合金作动器动力学模型和作动器故障模型。然后,设计模糊自抗扰控制容错振动控制方法,在作动器未发生故障的情况下,抑制天线型面的振动;在作动器发生故障的情况下,降低故障对天线型面精度的影响,实现容错控制。最后,对设计的容错控制算法进行仿真分析。仿真结果表明,模糊自抗扰容错控制方法不仅在作动器未发生故障时能将型面扰动降低93%,而且将三个作动器故障对型面精度的损失控制在4%。该天线型面振动容错控制方法对作动器故障干扰具有良好的适应性。  相似文献   

5.
针对超静卫星星体平台无陀螺、载荷敏感器与星体平台执行机构非共基准安装时整星存在姿态异位控制问题,提出了一种基于观测器估计星体平台姿态的复合控制方法。首先,建立星体平台/Stewart平台/载荷的动力学模型,并获得Stewart平台作动器关节空间的等效动力学模型。针对关节空间等效模型,设计super twisting观测器,以作动器平动位移为输入,以载荷和星体平台之间的相对姿态和角速度为输出,实现星体平台姿态和角速度估计。其次,以载荷测量姿态信息为输入,设计Stewart作动器的积分滑模控制律,实现载荷高精度指向控制。以观测器估计的星体平台姿态信息为输入,设计星体平台控制器实现星体平台的稳定控制。Lyapunov稳定性分析表明所设计的观测器和控制器能够保证闭环系统渐近稳定。数学仿真结果表明:在星体平台有陀螺时,载荷能够实现0.1″指向精度;在星体平台无陀螺时,采用观测器估计星体平台姿态并进行控制,载荷亦可实现0.1″指向精度。  相似文献   

6.
针对空间大型挠性结构航天器姿态精确指向控制中,执行机构振动和挠性结构变形对载荷指向带来的高频和低频扰动,提出了多环路复合控制策略,在传统姿态控制闭环回路的基础上,引入执行机构隔振回路和载荷指向精确控制回路,实现对执行机构振动的隔离和对载荷指向的精确补偿,并设计了回路的闭环控制方法。数学仿真和部分试验结果表明,该方法能够有效提升载荷指向精度。  相似文献   

7.
超静卫星包括星体、载荷和六自由度并联的主动指向超静平台.提出了一种基于干扰观测器设计的主动指向超静平台鲁棒控制方法,利用关节 任务空间控制实现无载荷姿态敏感器场景下的高精度指向.首先,设计关节 任务空间控制策略,控制器既采用了利于实现的关节空间控制器,又包含了任务空间的模型补偿,同时避免了正解运算.然后,针对非线性耦合和建模不确定性等问题,设计干扰观测器对星体与载荷之间的相对偏差干扰进行估计.在此基础上,基于李雅普诺夫方法设计了鲁棒控制器,保证了在干扰不确定性条件下的稳定性.最终,通过对比仿真分析,验证了提出方法的有效性.  相似文献   

8.
超静卫星包括星体、载荷和六自由度并联的主动指向超静平台.提出了一种基于干扰观测器设计的主动指向超静平台鲁棒控制方法,利用关节-任务空间控制实现无载荷姿态敏感器场景下的高精度指向.首先,设计关节-任务空间控制策略,控制器既采用了利于实现的关节空间控制器,又包含了任务空间的模型补偿,同时避免了正解运算.然后,针对非线性耦合和建模不确定性等问题,设计干扰观测器对星体与载荷之间的相对偏差干扰进行估计.在此基础上,基于李雅普诺夫方法设计了鲁棒控制器,保证了在干扰不确定性条件下的稳定性.最终,通过对比仿真分析,验证了提出方法的有效性.  相似文献   

9.
    
为实现对大型空间柔性桁架结构的振动控制,提出了一种基于动力吸振器的桁架多自由度自适应振动控制方法.首先阐述了采用多个动力吸振器实现桁架多自由度振动抑制的SISO(Single Input Single Output)控制策略,然后仿真验证了单吸振器系统对多频扰动的自适应抑制能力.其中控制算法为多频ADC算法,该算法无需知道结构的精确模型,即能通过自适应控制律实现对多频振动的抑制.仿真结果显示,相对被动吸振器,各频率分量抑制效果分别提高了62.38 dB和42.51 dB.最后实验验证了多动力吸振器对三棱柱桁架多自由度振动的抑制效果,实验结果显示,动力吸振器对单频振动的各自由度抑制效果分别为95.13%,93.59%和95.01%,对多频振动的各自由度抑制效果分别为94.26%,91.55%和93.42%.  相似文献   

10.
为实现对大型空间柔性桁架结构的振动控制,提出了一种基于动力吸振器的桁架多自由度自适应振动控制方法.首先阐述了采用多个动力吸振器实现桁架多自由度振动抑制的SISO(Single Input Single Output)控制策略,然后仿真验证了单吸振器系统对多频扰动的自适应抑制能力.其中控制算法为多频ADC算法,该算法无需知道结构的精确模型,即能通过自适应控制律实现对多频振动的抑制.仿真结果显示,相对被动吸振器,各频率分量抑制效果分别提高了62.38 dB和42.51 dB.最后实验验证了多动力吸振器对三棱柱桁架多自由度振动的抑制效果,实验结果显示,动力吸振器对单频振动的各自由度抑制效果分别为95.13%,93.59%和95.01%,对多频振动的各自由度抑制效果分别为94.26%,91.55%和93.42%.  相似文献   

11.
以超静平台在未来高精度航天器主动隔振和精确指向控制中的应用为基础,针对柔性铰形式超静平台的动力学特点以及超静平台基础和载荷扰动作用的影响,建立一般形式的超静平台动力学模型;进一步推导解耦力控制方法,将超静平台由高度耦合的多输入多输出系统变为单输入单输出线性时不变系统,以此消除各支杆之间的相互作用,极大地简化了控制器设计;在此基础上,进行数值仿真分析与验证.仿真结果表明:基于所建立的一般形式超静平台动力学模型,采用解耦力控制方法能够很好地实现超静平台的主动振动控制,并且方法简单易于工程实现.  相似文献   

12.
复杂动力学模型下星载天线跟瞄控制技术研究   总被引:1,自引:0,他引:1  
针对星载天线动力学复杂这一问题,从天线系统刚柔耦合动力学建模、指向跟踪控制以及振动抑制等方面研究了柔性星载运动部件的指向控制方法。首先,通过描述系统几何拓扑关系建立系统运动学方程,从而简化动力学建模过程;之后,利用假设模态法,对天线反射面挠性进行建模;最后,将拉格朗日方程与挠性关节模型相结合,从而建立了星载天线非线性刚柔耦合动力学模型。在以上复杂动力学建模的基础上,采用分层设计的思路进行了控制策略设计:先运用基于计算力矩法的滑模控制器得到不考虑挠性关节的耦合控制律,从而保证卫星基体的稳定性以及天线挠性反射面的振动抑制;再使用反步法对挠性关节进行控制,实现对天线反射面的指向精度控制。最后,讨论了动力学参数不确定性对系统跟踪指向控制的影响并采用数学仿真的方式验证了相关动力学模型与控制算法。仿真结果表明该方法能较好地实现对星载天线的指向跟踪控制以及振动抑制,提高星载天线的动态指向精度。  相似文献   

13.
大行程Hexapod平台及其隔振实验   总被引:2,自引:0,他引:2  
为提高车载、机载光学设备在低频大振幅扰动环境中的观测精度,研制了具有6自由度振动隔离能力的大行程主动隔振平台.平台主动元件采用直线电机,并针对隔振任务设计了无间隙万向节结构.隔振平台采用6-UPS并联机构Hexapod构型,具有30 kg承载能力,上平面可进行±30 mm平动和±8°转动.Hexapod平台控制方法采用PID(Proportion-Integral-Derivative)定位控制和X滤波自适应逆振动控制结合的方法.对Hexapod平台进行3~20 Hz垂直方向正弦振动隔离实验结果显示,平台对基座振动的振幅隔离幅度高于90%,对5~20 Hz频段随机振动隔离实验结果显示,隔振前后上平面振幅峰峰值下降78%.  相似文献   

14.
为了完成挠性航天器高精度姿态控制任务,首先采用摄动法分析了挠性航天器动力学方程,得到相应的0阶和1阶动力学系统.针对0阶非线性时不变系统,同时考虑到转动惯量不确定性和干扰,对已有的非线性直接自适应控制律进行改进,设计PI(Propor-tional-Integral)型参数自适应律,以提高姿态控制精度,同时给出了稳定性证明.针对1阶系统设计PI控制器及PPF(Positive Position Feedback)控制器,以有效抑制挠性结构振动.仿真结果表明,在采用摄动法对动力学方程分析的基础上设计姿态控制系统,可以有效完成挠性航天器高精度姿态控制任务.  相似文献   

15.
针对大载荷对象低频微振动主动振动控制平台的设计问题,提出一种基于模块拼装思想的主被动混合隔振平台结构方案,模块化设计大大简化了主动振动控制平台的设计难度,使得拼装后的平台具有承载能力强、精度高等优点,由于所用模块单元结构形式完全相同,组合后的主动隔振平台的特性完全取决于单元的特性;以主动隔振单元为研究对象运用有限元法建立其动力学模型,模型中包含以位移向量形式表示的外界激振项和以力向量形式表示的主动控制项,当上述两项为零时,可以通过求解动力学模型得到主动隔振单元的固有特性;利用ANSYS商用软件进行主动隔振单元的模态分析,对比结果验证了该动力学模型的正确性.  相似文献   

16.
磁悬浮控制力矩陀螺(MSCMG,Magnetically Suspended Control Moment Gyro)是大型航天器姿态控制的关键执行机构,影响MSCMG输出力矩准确度的一个关键因素是其框架伺服系统的控制精度.为提高MSCMG框架伺服系统的抗干扰能力和控制精度,提出了一种基于角加速度的干扰观测器.其设计思想是:卡尔曼滤波器利用角位置估计出角速度并送往状态观测器以获取准确的角加速度,角加速度和电流作为干扰观测器的输入以获得补偿电流,补偿电流加到电流环的输入端以补偿各种干扰.干扰观测器结构简单,抗干扰能力强.实验表明:该方法有效地提高了MSCMG框架伺服系统的角速度精度与稳定度.  相似文献   

17.
摘要: Hexapod多自由度微激励系统常用于航天器有效载荷在轨微振动环境的模拟,但采用现有控制方法无法精确稳定跟踪低频正弦加速度,这是由于系统耦合度高、非线性在低频段较强,被控对象相位滞后过大造成的.针对此问题,基于传统离线迭代控制方法,提出一种复合超前校正、多倍频陷波滤波器的改进离线迭代控制方法.其中,离线迭代进行补偿控制,超前校正进一步补偿系统相位,多倍频陷波滤波器去除非线性干扰.跟踪低频定频正弦加速度的实验结果表明,对比传统离线迭代控制方法,改进方法收敛快、控制精度高;对比现有自适应正弦振动控制方法,改进方法将符合精度要求的加速度控制频带下限由14.5 Hz扩宽至8 Hz.实验结果验证了所提方法的有效性.  相似文献   

18.
复杂航天器高性能姿态控制是完成现代新型空间任务的基础,需兼顾鲁棒性、快速性、精度和控制能量等多目标要求,但目前大多数控制系统只针对某单一目标设计.针对大型挠性航天器多目标姿态控制问题,提出一种基于差分粒子群优化算法和输出反馈的鲁棒控制方法.首先,推导了含参数不确定性的系统动力学模型;然后,给出了差分粒子群优化算法的定义...  相似文献   

19.
近年来,控制力矩陀螺逐渐广泛应用于航天器姿态控制中.为了减小动量轮的高速旋转引起的振动对星体的影响,需要在控制力矩陀螺于航天器之间安装隔振装置.但是隔振装置的引入对控制力矩陀螺内部机构的动力学特性造成了影响.基于此,本文建立了柔性隔振机构耦合作用下的控制力矩陀螺动力学模型.本文通过欧拉角变换建立了陀螺内部各机构的运动学关系,使用能量方法建立了陀螺内部各结构的动力学特性.并在Matlab中进行了数值仿真与分析.通过仿真发现了隔振结构对陀螺的输出力矩产生了影响,在柔性支撑下的陀螺力矩存在明显波动,且波动范围随动量轮转速的增加而增加.同时,柔性隔振机构的引入还导致了干扰力矩的产生,该干扰力矩对控制力矩陀螺框架电机的控制存在较大影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号