首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Acta Astronautica》1999,44(7-12):635-643
BiSbTe3-mixed crystals have been grown at normal and reduced gravity (during the MIR'97-mission) using a Bridgman-configuration of the TITUS facility. The distribution of the components in the melt, and so the homogeneity of the growing crystal, is strongly influenced by the flow in the melt even in the case of weak convection. The flow configuration in the melt especially in front of the solid-liquid phase boundary can be investigated by means of a segregation analysis of the system components and an additional Pb-dopant. The BiSbTe3-system is because of its hydro-dynamic properties a typical representative of semiconductor melts (low Prandtl number, high Schmidt number) but there are also some special properties relating to the segregationally caused enrichment of the lighter tellurium at the phase boundary and the resulting solutal destabilities. Experimental experiences from segregation analysis have shown that the mass transport in the melt at normal gravity is mainly influenced by convective mixing determined by thermally and solutally caused buoyancy forces. Numerical simulations have been performed for the real experimentally used configurations. These simulations have shown that a strong coupling of thermal and solutal effects exists and have given axial as well as radial segregation profiles being in excellent agreement with the experimental results for the vertical normal gravity grown crystals. For micro gravity conditions a reduction of the flow velocity of more than two orders of magnitude (depending on the micro gravity level and the direction of the residual acceleration) resulting in diffusion controlled component segregation has been predicted.The results of the two micro gravity grown crystals, especially the axial and radial segregation profiles as a sensitive indicator for the flow configuration in front of the phase boundary will be given and discussed in the paper. They will be compared with the results of numerical simulations of the melt flow for the real processing parameters measured during the TITUS growth processes and with experimental as well as numerical results for vertical normal gravity grown reference Samples.  相似文献   

2.
The effect of constant and time-dependent accelerations (vibrations) on the melt flow and heat and mass transfer in the process of crystal growth by the method of directional crystallization (Bridgman method) onboard spacecraft is numerically investigated. The mathematical formulation of the problem and the technique to solve it numerically are given. The time-averaged flow arising under the action of vibrations in a nonisothermal fluid is investigated. With the help of a rational choice of dimensionless similitude parameters, a generalized dependence on the intensity of melt flow is obtained for the radial segregation of dopants. This dependence is invariant with respect to the type of motive power and thermal boundary conditions in the region of very small velocities of melt flow (creeping flow), which are characteristic for microgravity conditions. The allowable levels of constant accelerations, as well as the frequency dependences of tolerable vibrations, are obtained for five typical semiconductor materials: Ge(Ga), GaAs(Te), InSb(Te), Si(P), and Si(B). It is shown that the radial segregation of dopant is much more sensitive to microaccelerations than the axial one. In the region of small velocities, the latter is determined by the duration of the transition regime, which depends on certain physical properties of the melt. New problems that resulted from the investigations performed are discussed.  相似文献   

3.
4.
Analyzing the results of space and ground-based experiments carried out in the Baikov Institute of Metallurgy and Materials Science to study the processes of the melting and crystallization of two-phase InSb–InBi alloys of an indium–antimony–bismuth (In–Sb– Bi) triple system, we have demonstrated the gravitational sensitivity of the InSb-based solution– melt. It manifests itself as a certain asymmetry of the boundary of the dissolution of the InSb ingot by the InSb–InBi melt and heterogeneity of the melt along this boundary depending on the magnitude and direction of the gravity force acceleration gin the range (1–10–3–10–5)g 0, where g 0is the acceleration of the gravity force on Earth. For the first time, it is established in the experiments under analysis that the homogeneity of melts of a complex composition with components of various densities can be reached only at magnitudes of quasistationary (residual) microaccelerations g< 10–6 g 0.  相似文献   

5.
《Acta Astronautica》2001,48(2-3):93-100
Numerical simulations were performed to optimize the conditions and parameters for directional solidification of Te-doped GaSb in reduced gravity ranging from 10−3 to 10−5g0. Our key goal was to quantify the velocity and concentration fields with and without a baffle present in the melt. The effect of the distance of the baffle from the solid–liquid interface was investigated. When the baffle is placed 0.5 cm from the solid–liquid interface, acceleration of 10−3g0 does not cause significant interference with segregation. Furthermore, the flow between the baffle and the interface (low Reynolds number “creeping” flow) does not depend on fluid properties (viscosity).  相似文献   

6.
The comparative analysis of the results of space and ground-based experiments IMET RAS on the growth of InSb:Te crystals by the Bridgman method and floating zone method (FZM) is made for the purpose of studying the influence of microgravity on the growth, structure, and properties of grown crystals, and thus the gravity sensitivity of InSb melt is demonstrated. It is shown that, under microgravity conditions, the Bridgman method makes it possible to grow InSb:Te crystals without contact with the ampoule walls, which provides for the single crystal structure, the absence of striations, and a low dislocation density. For the first time, InSb:Te monocrystals were grown with the FZM under microgravity. The anomalous behavior of the impurity core (facet effect) in these crystals correlates with the changed magnitude and direction of the quasi-stationary (residual) microaccelerations.  相似文献   

7.
Feonychev  A. I.  Dolgikh  G. A. 《Cosmic Research》2004,42(2):117-128
A numerical investigation of the melt flow and heat and mass transfer is carried out at the crystal growth under zero gravity, when the melt detachment from ampoule walls, crystal vibration, and various magnetic fields are active. Specific features of the melt flow are demonstrated depending on the size of a detachment zone adjacent to the crystallization boundary. The velocity of the averaged flow generated by crystal vibration is determined as a function of the vibration intensity. It is shown that the crystal vibration cannot compensate a thermal capillary flow (caused by detachment of the melt from the ampoule wall) and reduce the macrosegregation of impurities. It is shown that the application of steady and rotating magnetic fields are inefficient for all ampoule methods of crystal growth under microgravity conditions.  相似文献   

8.
The different types of convective phenomena which may occur during the dendritic solidification of metallic alloys are discussed from an order of magnitude analysis. Bulk thermal convection and/or interdendritic solutal convection have to be considered according to the values of the experimental data. Scaling laws for the solute boundary layer resulting from bulk thermal convection have already been derived. It is shown here that the interdendritic flow depends on a solutal Grashof number Gr based on the horizontal density gradient and a characteristic length Ls which is of the order of the liquid channels width. For Gr < 1, which is generally verified in practical cases, the interdendritic flow velocity Ur is proportional to the Grashof number. This a priori law compares favorably with the results of horizontal solidification experiments where the mean interdendritic flow velocity has been estimated from the resulting measured macrosegregation. In these experiments, as well as for most horizontal dendritic solidifications of metallic alloys at 1 g, the ratio UrR (R is the growth rate) is of order one. In order to cancel the interdendritic flow effects, this ratio has to be lowered by one order of magnitude. According to our analysis, this can be obtained by performing the experiments either at a slightly reduced g level (~10?1 g), or at 1 g in a vertical stable configuration with a sufficiently low residual horizontal thermal gradient.  相似文献   

9.
Using numerical simulation, a mechanism of formation of polar cyclones in the region of location of the arctic front in the winter troposphere of the Northern Hemisphere is studied. The simulation was performed with the help of the complete system of gas dynamics equations taking into account the transport of infrared radiation, phase transitions of water vapor into micro-drops of water and ice particles, and with allowance made for sedimentation of these drops and ice particles in the gravity field. In the initial and boundary conditions of the model, observational data on the structure of dominating air flows in the region of the arctic front over Norwegian Sea in January are used. Formation of large-scale cyclonic vortex flows in 15–20 hours at the presence of a bend of the central line of the shear flow in the arctic front 500–600 km long with northward or southward deviations by 100 km and more is obtained numerically. On the basis of the simulation results, a method of short-term forecast of formation and motion of polar cyclones is suggested.  相似文献   

10.
微型分子泵用于航天器上微小型探测仪器的高真空环境获得.着眼于简化结构,减小体积与装配难度,面向径向微型分子泵,针对其核心部件——定转子进行结构设计,并利用ANSYS、COMSOL软件作仿真分析,探究定转子径向结构、叶片角度、节弦比等对泵抽气性能的影响;比较径向与轴向分子泵的抽气效果.结果表明,在同等抽气系统体积下,径向...  相似文献   

11.
采用N-S方程求解了100 W微波等离子体推力器(MPT)选用不同推进工质时的性能参数;并采用直接蒙特卡洛模拟方法(DsMC)对MPT羽流进行了数值模拟.结果表明,几种工质的推力变化不大,氮气为23.6 mN,氮气为24.8mN,氩气为24.8 nuN;但比冲区别较大,氮气为565.2 s,氮气为243.7 8,氢气为180.2 s.羽流场中,密度、压强及温度沿轴向和径向均逐渐减小;轴向速度在轴线附近变化不大,采用氩气工质时,约1 700 m/s,在远离轴线区域,沿流动方向逐渐增大,沿径向逐渐减小;径向速度沿轴向变化不大,沿径向逐渐增大,并在接近流动区域边界时迅速减小.  相似文献   

12.
吴迪  金峰  刘勇 《火箭推进》2021,47(2):32-39
为了更好地了解同轴离心喷嘴的工作特性,基于DDES模型研究了油气比分别为0.5、1、1.5下以煤油/氧气为推进剂的喷嘴的流体动力学特性与非预混燃烧特征.研究结果表明:由于旋流离心作用,在喷嘴出口轴心处和燃烧室顶部分别存在一个驻定涡和角涡,驻定涡径向分布在0.9 R~1.4 R,轴向尺寸在-1 R~14 R,随着燃料流量...  相似文献   

13.
14.
Two phase gas–liquid flow in pipes is widely spread in space applications: bubble flows appear in cryogenic components transport through fuel/oxidant supply lines. Another important application is based on the fact that in liquid flows with small bubbles a close contact between the two phases occurs resulting in high rates of transfer between them. The compactness of a system makes it ideally suited to serve as a space-based two-phase bio-reactor which forms an important unit in environmental control and life support system deployed onboard. A numerical method was developed for solving a nonlinear problem of thermal interaction between a spherical gas bubble and surrounding liquid. The system of equations for describing this interaction was formulated. It includes ordinary and nonlinear partial differential equations. The problem was solved using finite-difference technique by dividing the system into spherical layers inside the bubble and employing the new variable which “freezes” the moving boundary of the bubble. A numerical solution is obtained for the problem of radial bubble motion induced by a sudden pressure change in the liquid—a situation which corresponds to the behavior of bubbles beyond a shock wave front when the latter enters a bubble curtain.  相似文献   

15.
The heat transfer behavior of flow condensation inside horizontal tubes under zero-gravity and Earth-gravity conditions is modelled and analyzed. For Earth conditions for wetting fluids the annular flow region changes to a stratified flow pattern owing to gravity drainage of the condensate from the upper portion of the tube. The stratified condensate layer is considered inactive in the heat transfer process; its magnitude is determined along the tube length using the analytical results of Rufer and Kezios. Under zero-gravity conditions no such gravity drainage occurs and so the flow is considered to be annular along the complete length of the tube. The analytical approach of Bae was used to evaluate the heat transfer rates under zero gravity conditions. The results indicate a substantially poorer condensing performance under zero-gravity conditions. These results can be simply explained in terms of the smaller condensate film thickness over the upper portion of the tube periphery at any axial location under earth-gravity conditions because of gravity drainage of the condensate.  相似文献   

16.
A unified second-order-moment gas–particle two-phase turbulent model incorporated with kinetic theory of granular flows (USM-θ) is developed to study the particle dispersion behavior of dense gas–particle flows in horizontal channel with 6.96 μm wall roughness and with earth, lunar and microgravity environments, respectively. Anisotropy of gas and particle two-phase stresses and the interaction between two-phase stresses are fully considered by constructing two-phase Reynolds stress model and the transport equation of two-phase stress correlation. The flow behavior of particles in a horizontal channel of Kussin and Sommerfeld [12] experiments is numerically simulated. Results show that the reduced gravity conditions affect the particle concentration distribution, particle velocity and fluctuation velocity, particle temperature, axial–axial fluctuation velocity correlation of gas and particle and particle collision frequency. Under microgravity conditions, particle temperature and collision frequency are much less than those of earth and lunar gravity. Compared with earth gravity, anisotropic of two-phase flow and sedimentation are weaker.  相似文献   

17.
转捩诱导法向力及其对细长尖锥气动特性的影响   总被引:3,自引:3,他引:3  
楼洪田 《宇航学报》1989,4(3):54-64
边界层转捩时,是否会出现诱导法向气动载荷,这是一个很有意义的问题。本文介绍了在高超音速风洞中完成的静态气动力实验与动态气动力实验,它证实这种诱导法向载荷是存在的,是边界层转捩的不对称性造成的,并对细长锥的气动特性有明显而呈规律性的影响。  相似文献   

18.
微型固体姿控发动机在航天领域具有广泛的应用前景。以基于MEMS技术的微喷管为研究对象,首先通过计算微喷管中的克努森数,得到了微喷管中的气相流动状态;然后,采用CFD-DSMC方法,模拟了微喷管中的气粒两相流动,并研究了颗粒相质量分数和粒径对气相流动的影响。结果表明,在所研究的来流条件下,微喷管中的连续介质假设是成立的;气相与颗粒相间的动量和能量交换,导致气相马赫数降低、温度升高,同时也导致颗粒相速度增加、温度降低;颗粒相质量分数和粒径均能显著影响气相的马赫数和温度。  相似文献   

19.
网套补偿器在航天管路系统中广泛使用,补偿器的轴向刚度是其基本力学参数,然而其复杂的微结构特征使得轴向刚度呈现强烈的非线性。为实现对网套补偿器轴向拉伸全过程的仿真计算,从钢丝网套入手,基于钢丝的螺旋梁模型,分析了轴向长度、螺旋角及网套直径对轴向刚度的影响,结果表明轴向长度和螺旋角将显著影响轴向刚度;分析了边界条件的影响,结果表明在计算轴向刚度时固定边界与约束径向位移的循环边界可以互换。结合网套刚度分析的结论,提出了基于接触关系的子网套刚度分析方法,解释了拉伸时轴向刚度非线性变化原因,进一步建立了2/N波纹管-螺旋梁复合模型以及2/N单波-单锭螺旋梁复合模型用于不同刚度阶段的有限元计算。算例结果表明,仿真获得的力-位移曲线与试验曲线一致性较好,高刚度阶段的轴向刚度误差为3.40%。  相似文献   

20.
研究的目的是验证热管吸热器有良好的热性能。通过对先进太阳能热动力系统单元热管吸热器进行数值仿真,建立了相应的数学模型,给出了数值解法,并把仿真结果同NASA计算结果进行了对比。分析结果表明,热管吸热器由于热管良好的导热性和理想的等温性,热管在轴向的温差很小,这就使得热管在不同位置上的容器内的PCM都能同步、均匀的熔化;另外热管吸液芯的正常工作使得热管周向温度分布均匀,从而避免热斑现象;热管吸热器由于热管在轴向和周向上良好的等温性,在阴影期末,各蓄热容器内的PCM能够同时凝固,并最终达到完全凝固,从而避免热松脱现象。因此,热管吸热器提高了系统的效率,能避免热斑和热松脱现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号