首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high-LET heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.  相似文献   

2.
Total evaluation of cosmic radiation effect with or without discrimination of individualized HZE-ion effects in dry seeds flown for 10 days on STS-9, yielded significant evidence for radiation damage in space. They depend on the biological criteria tested (seed germination, morphogenesis, embryo lethality, mutation rate) which stand for early, physiological and late genetic effects. They are also related to the radiation shielding environment in the space shuttle. Proceeding from these results three direct questions can be posed for present (LDEF-1) and future (ERA-1, D-2) experiments in space: What is the influence of cosmic radiation on cytogenetic repair and ontogenetic restitution processes? Does microgravity disorder the morphogenesis (i.e. growth and cell differentiation)? Is there an interaction between the effects of cosmic radiation and microgravity in eukaryotic plant systems?  相似文献   

3.
Previous space experiments suggest a high value for the RBE of cosmic radiation. A possible explanation could be a change in cell radiosensitivity due to a combined effect of radiation and other factors related to the space environment and to the space flight. Results of the EXOBLOC II experiment support this assumption. On earth, vibrations or accelerations applied before or after irradiation can change the responses to radiation. Microgravity could be the main factor affecting the radiosensitivity and DNA repair but this hypothesis must be confirmed by additional experiments.  相似文献   

4.
Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) recently led to results, which will contribute for the estimation of genetic risk for long and/or repeated stay of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effects caused by ionizing radiation in particular stem cells. In this article we present an overview of our space experiments with Arabidopis thaliana seeds. We present first results of investigations on certain damage endpoints (seed germination, plant survival, mutation frequencies), caused by cosmic ionizing radiation in dry dormant plant seeds of Arabidopsis thaliana after different short term (e.g. IML-1 and D-2) and long term (e.g. EURECA and LDEF-1) space exposures. Total dose effects of heavy ions and the other components of the mixed radiation field on damage endpoints and survival after space exposure and gamma-ray preirradiation were obtained. A new method of total dose spectrometry by neutron activation has been applied.  相似文献   

5.
This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.  相似文献   

6.
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time.  相似文献   

7.
We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km).  相似文献   

8.
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification.  相似文献   

9.
The role of cosmic ionizing radiation, including heavy ions (HZE-particles) in the induction of mutations at the molecule-, chromosome-, genome- and cell-level is discussed on the basis of different DNA organization in a pro- and eukaryotically compartmented plant system (Arabidopsis thaliana (L.) Heynh.). Data recently obtained on the biological effects of ionizing radiation make it timely to discuss comparatively the evolutionary potentials of space radiation effects in the pro- and eukaryotic genomes (plasmon, plastidom, chondriom, and nucleom) during long duration exposure on space flights.  相似文献   

10.
The evolution of the ability of living cells to cope with stress is crucial for the maintenance of their genetic integrity. Yet low levels of mutation must remain to allow adaptation to environmental changes. The cellular slime mold D. discoideum is a good system for studying molecular aspects of the repair of lethal and mutagenic damage to DNA by radiation and chemicals. The wild-type strains of this soil microorganism are extremely resistant to DNA damaging agents. In nature the amoeboid cells in their replicative stage feed on soil bacteria and are exposed to numerous DNA-damaging chemicals produced by various soil microorganisms. It is probable that the evolution of repair systems in this organism and perhaps in others is a consequence of the necessity to cope with chemical damage which also confers resistance to radiation.  相似文献   

11.
Recently, comparison of biophysical data obtained from orbital flights of short and long duration led to results which will be significant for long and/or repeated stay of man in space. Under orbital conditions biological stress is induced in dry seeds of Arabidopsis thaliana by cosmic radiation especially its high energetic, densely ionizing component, the heavy ions (HZE). For comparison of radiation impact during different space flights a biological attempt at estimating the impact of single particles with high mass and energy (HZE-particles) on seeds was developed. Subdivision into LET-groups showed a remarkable contribution of an intermediate group (LET = 35 to 100 keV/micrometer) due to medium heavy ions (Z = 6 to 10). Efficiency factors for radiation damage experimentally determined and assigned to different LET-classes were compared to radiation quality factors discussed in literature.  相似文献   

12.
During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances.  相似文献   

13.
Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If however, as the so-called "Microlesion Theory" allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, "tunnel-lesions" or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. On-going light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu 56Fe ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.  相似文献   

14.
Experimental data obtained from two Cosmos missions (2044, 2229) performed with dry plant seeds of Arabidopsis thaliana in a Biostack configuration are compared. Biological stress and genetic risk are induced in dry seeds by cosmic radiation, especially the high energetic, densely ionizing component of eavy ons (HI). Subdivision of impacting HI particles into LET-groups (15–35; 35–100; >100 keV/μm) showed the contribution of each LET group to the induction of different biological damage endpoints (survival, cell transformation, lethal plant development). An attempt is presented to comprehend the influence of the spatial energy deposition as a biophysical HI track parameter.  相似文献   

15.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

16.
Spores of Bacillus subtilis were exposed to selected factors of space (vacuum, solar UV radiation, heavy ions of cosmic radiation), and their response was studied after recovery. These investigations were supplemented by ground-based studies under simulated space conditions. The vacuum of space did not inactivate the spores. However, vacuum-induced structural changes in the DNA, and probably in the proteins, caused a supersensitivity to solar UV radiation. This phenomenon is caused by the production of specific photoproducts in DNA and protein, which cannot be removed by normal cellular repair processes. In vegetative bacterial cells, exposed to vacuum, cell dehydration led to damage of the cell membrane, which could be partly repaired during subsequent incubation. The high local effectiveness of the cosmic heavy ions further decreases the chance that spores can survive for any length of time in space. Nonetheless, a spore travelling through space and protected from ultraviolet radiation could possibly survive an interplanetary journey. Such a situation favors panspermia as a possible explanation for the origin of life.  相似文献   

17.
This paper presents a new concept of radiation hazard assessment for spacecraft crew members during long term space missions on the basis of a generalized dosimetric function. This new dosimetric function enables a complicated nature of space radiation exposure to be reduced to the conditions of a standard irradiation. It can be obtained on the basis of mean-tissue equivalent dose values calculated for each space radiation source and transmission coefficients describing the influence of the complex spatial and temporal distribution of the absorbed dose in the cosmonaut's body on the radiobiological effects. The combination of cosmic ionizing radiation with other non-radiation nature factors in flight can also be accounted for. In terms of the generalized dose, it is possible to assess the nature and extent of lowering a crew working capacity, as well as radiation risk, both during a flight and post flight period.  相似文献   

18.
Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations.  相似文献   

19.
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.  相似文献   

20.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号