首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Observations and simulations show that Mars' atmosphere has large seasonal variations. Total atmospheric density can have an order of magnitude latitudinal variation at exobase heights. By numerical simulations we show that these latitude variations in exobase parameters induce asymmetries in the hydrogen exosphere that propagate to large distances from the planet. We show that these asymmetries in the exosphere produce asymmetries in the fluxes of energetic neutral atoms (ENAs) and soft X-rays produced by charge exchange between the solar wind and exospheric hydrogen. This could be an explanation for asymmetries that have been observed in ENA and X-ray fluxes at Mars.  相似文献   

2.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   

3.
    
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

4.
    
Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which comprise a capsule and a canopy. The objective of the present study is to investigate the effects of the Martian atmosphere on the unsteady flows produced by these parachute two-body models and the structural behavior of the flexible canopy. It was found that in the Martian atmosph...  相似文献   

5.
The interaction of the solar wind with the Martian exosphere and ionosphere leads to significant loss of atmosphere from the planet. Spacecraft data confirm that this is the case. However, the issue is how much is actually lost. Given that spacecraft coverage is sparse, simulation is one of the few ways for these estimates to be made. In this paper the evolution of our attempts to place bounds on this loss rate will be addressed. Using a hybrid particle code the loss rate with respect to solar EUV flux is addressed as well as a variety of numerical and chemical issues. The progress made has been of an evolutionary nature, with one approach tried and tested followed by another as the simulations are improved and better estimates are produced. The results to be reported suggest that the ion loss rates are high enough to explain the loss of water from Mars during earlier solar epochs.  相似文献   

6.
本文利用二维高阶矩湍流闭合的中尺度数值模式,模拟了局地加热源上大气边界层的湍流结构,讨论了大气边界层与自由大气之间的相互作用,并由此亦使人们在海风消失时常常观测到的“风通(bore)”现象得到解释。  相似文献   

7.
    
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

8.
针对超低轨道卫星受空间环境影响显著,对特定目标的轨迹规划难度大的问题,分析了经验大气模型中空间环境参数预报的预报误差以及空间环境参数预报对轨迹规划的影响.在目前空间环境参数预报的误差特性的基础上,建立了轨道控制量和空间环境参数双变量的轨迹评估规划的算法,通过轨迹规划评估后选取最优轨迹规划方案.该算法能够很好地适应空间环境参数的变化,降低空间环境参数预报误差带来的轨道控制风险.目前,该算法已在某超低轨道卫星的轨迹规划中得到成功应用,对需要考虑空间环境因素影响的较低轨道卫星的轨迹规划与控制具有一定的借鉴意义.  相似文献   

9.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

10.
    
The ionic charge distributions of solar energetic particles (SEP) as observed in interplanetary space provide fundamental information about the origin of these particles, and the acceleration and propagation processes at the Sun and in interplanetary space. In this paper we review the measurements of ionic charge states of energetic particles in interplanetary space and discuss their implication for our understanding of SEP sources, and acceleration and propagation processes.  相似文献   

11.
    
Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO2 Martian ramjet combustion efficiency. It was carried out at a mainstream mass flow rate of 110 g/s and a temperature of 810 K. The chamber pressure was measured under different configurations and Oxidizer to Fuel(O/F) ratios. Results showed that the engine achieved self-sustaining combustion and worked stably during experiments. The pre-combustion chamber is needed to increase the co...  相似文献   

12.
针对固体推进剂所面临的Al粉燃烧不充分和微纳尺度下组分偏聚两大关键问题,采用组分复合技术设计制备一种将氧化剂AP包覆在氟化物改性Al粉表面的含能微单元Al@PFPE@AP核壳型粉体,通过扫描电子显微镜、激光粒度仪、氧弹量热仪、电感耦合等离子发射光谱仪以及X射线衍射仪等对微单元粉体的形貌、粒径、燃烧性能以及燃烧产物进行分析。结果表明:含能微单元Al@PFPE@AP呈现明显的核壳结构,粒径较均一;当PFPE的添加量为5%(质量分数)时,相比于机械混合样品(AP+Al),Al@5%PFPE@AP的燃烧热值提高了63.8%,燃烧产物粒径减小了61.8%,燃烧产物中活性铝含量减少57%以上;PFPE可以与Al粉发生预点火反应,增加Al粉的反应活性,并且Al粉表面对AP分解有催化作用,使AP的高温分解温度和低温分解温度分别降低了12℃和10℃;核壳型微单元结构对体系燃烧性能的提升有明显的促进作用,能够大幅度提高推进剂主要组分燃烧时的能量水平。  相似文献   

13.
为定量分析上行天线组阵增益损失的影响因素,提出一种通过建立数学模型分析合成损耗的估计方法.首先基于天线原理和电磁波传输理论建立了天线组阵上行链路信号的数学模型,以统计学理论对数学模型进行分析,得到了影响上行链路信号的若干因素.通过分析得出,深空探测信号在远距离传输中因大气相位扰动引起的误差是造成天线组阵增益损失的最主要因素.再通过对大气相位扰动误差的进一步分析,构建S频段和X频段下大气相位扰动的空间自相关模型和时间自相关模型,得到组阵基线长度和工作仰角同合成损耗的关系.经过对各误差源的分析可知,在目前的技术水平下,能够满足上行天线组阵工程应用的精度要求.  相似文献   

14.
    
The ionic charge of solar energetic particles (SEP) as observed in interplanetary space is an important parameter for the diagnostic of the plasma conditions at the source region and provides fundamental information about the acceleration and propagation processes at the Sun and in interplanetary space. In this paper we review the new measurements of ionic charge states with advanced instrumentation onboard the SAMPEX, SOHO, and ACE spacecraft that provide for the first time ionic charge measurements over the wide energy range of ∼0.01 to 70 MeV/nuc (for Fe), and for many individual SEP events. These new measurements show a strong energy dependence of the mean ionic charge of heavy ions, most pronounced for iron, indicating that the previous interpretation of the mean ionic charge being solely related to the ambient plasma temperature was too simplistic. This energy dependence, in combination with models on acceleration, charge stripping, and solar and interplanetary propagation, provides constraints for the temperature, density, and acceleration time scales in the acceleration region. The comparison of the measurements with model calculations shows that for impulsive events with a large increase of Q Fe(E) at energies ≤1 MeV/nuc the acceleration occurs low in the corona, typically at altitudes ≤0.2 R S .  相似文献   

15.
This “rapporteur” report discusses the solar photosphere and low chromosphere in the context of chemical composition studies. The highly dynamical nature of the photosphere does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still an open question how the highly dynamical nature of the low chromosphere contributes to first ionization potential (FIP) fractionation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Particle Acceleration at Interplanetary Shocks   总被引:1,自引:0,他引:1  
This paper briefly reviews proton acceleration at interplanetary shocks. This is key to describing the acceleration of heavy ions at interplanetary shocks because wave excitation—and hence particle scattering—at oblique shocks is controlled by the protons and not the heavy ions. Heavy ions behave as test particles, and their acceleration characteristics are controlled by the properties of proton-excited turbulence. As a result, the resonance condition for heavy ions introduces distinctly different signatures in abundance, spectra, and intensity profiles, depending on ion mass and charge. Self-consistent models of heavy-ion acceleration and the resulting fractionation are discussed. This includes discussion of the injection problem and the acceleration characteristics of quasi-parallel and quasi-perpendicular shocks.  相似文献   

17.
原子干涉陀螺仪是一种实现高精度角速率测量的新型惯性器件,被认为是下一代导航技术中的核心器件。报道了在连续冷原子束干涉陀螺仪研究上的最新进展。提出了基于连续冷原子束的干涉陀螺仪方案,该方案在保证系统灵敏度和紧凑型的前提下有助于解决冷原子干涉陀螺仪低带宽和数据率的问题。利用激光冷却的~(87) Rb冷原子束作为原子光源,利用多普勒敏感的双光子受激拉曼跃迁进行原子波包的相干操控,演示了π/2-π-π/2拉曼脉冲序列的空间型原子干涉。数据估算原子干涉陀螺的短期灵敏度为7.8×10~(-5)(rad/s)/Hz~(1/2)(1s积分时间),其中干涉条纹的信噪比为15.1,系统带宽为190Hz,系统理论带宽可以达到790Hz。  相似文献   

18.
一种简易无人机载大气数据计算机的设计   总被引:3,自引:0,他引:3  
大气数据参数的采集和处理是无人机的关键技术之一。本文针对无人机的具体特点,给出了一种基于C51单片机的简易大气数据计算机的设计方案,并着重对系统的硬件和软件设计进行了分析和研究。实验表明该系统满足无人机的使用要求。  相似文献   

19.
上抛式冷原子干涉重力仪,以Rb原子作为操控介质,使其在二维磁光阱中被冷却,在三维磁光阱中装载并在干涉区内实现探测。根据重力仪对真空系统的特殊要求,对真空系统的结构和参数进行设计,完成真空泵、真空腔室结构及光学玻片等关键部件的选型及设计,设计出结构紧凑实用的超高真空系统。在后期磁光阱的装配中,提出了相应的关键工艺技术,实现了超高真空系统的组装搭建。通过差分管的设计,二维磁光阱的真空度控制在10-6Pa,三维磁光阱的极限真空度达到10-8Pa。  相似文献   

20.
In the last 45 years I have studied the thermal structure of the atmosphere from the thermosphere down to the stratosphere, and found evidence of its variability in relationship with the change of solar irradiation during the 11-year solar cycle. I would review, in the light of recent model results, the measurements which I had made since the 1960s and which, for some of them, did not find any explanation at the time of their publication. The data were obtained by two different techniques, rockets and lidars and correspond to different regions of the atmosphere from the upper thermosphere to the stratosphere. The expectation was until recently that the atmosphere should be warmed by an increase of solar flux in the course of the solar cycle due to the increase of UV flux. It has been shown to be the case in the tropical stratosphere and at all latitudes in the upper thermosphere. But, at high and mid latitudes and at other altitudes, the reverse situation was found to exist and, until recently, this cooling observed in parts of the atmosphere with increasing solar flux had never been simulated by models. In addition to reviewing our own data, the paper will present recent results using other dataset which support our observations. It is only recently that we succeeded with a model able to tune the forcing by planetary waves at the tropopause level and thus reproduce such behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号