共查询到20条相似文献,搜索用时 15 毫秒
1.
A.R. Breen P.J.S. Williams 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(12):115-118
An earlier theoretical model (UW-87) accurately predicted the electron temperature in the daytime F-region but suggested N2 concentrations significantly greater than the predictions of MSIS-86. This discrepancy is resolved when the model is developed to include the effects of vibrationally excited nitrogen molecules and electronically excited oxygen ions on the F-region recombination rate. The revised model (UW-92) continues to predict electron temperatures close to the layer peak with great accuracy but it is now more closely consistent with MSIS. However, the electron temperatures predicted by this model, which are in close agreement with EISCAT observations, are significantly higher than the values predicted by the international Reference Ionosphere. 相似文献
2.
P. Velinov Chr. Spasov P. Marinov Y. Tasev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):25-28
A comparison is made between the subpeak electron density profiles, obtained at selected local hours by vertical ionospheric sounding at the ionospheric station at Sofia (42.6°N; 23.3°E) and the IRI profiles for spring, summer, winter and two levels of solar activity (R = 10 and 100). It is demonstrated that the ionospheric profiles above Sofia are in rather good agreement with the values computed with IRI. 相似文献
3.
G. Murtaza S. IqbalM.A. Ameen A. Iqbal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime. 相似文献
4.
P.F. Denisenko V.V. Sotsky O.A. Maltseva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(12):4078-4088
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research. 相似文献
5.
6.
E.O. Oyeyemi L.A. McKinnell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
A new neural network (NN) based global empirical model for the F2 peak electron density (NmF2) has been developed using extended temporal and spatial geophysical relevant inputs. Measured ground based ionosonde data, from 84 global stations, spanning the period 1995 to 2005 and, for a few stations from 1976 to 1986, obtained from various resources of the World Data Centre (WDC) archives (Space Physics Interactive Data Resource SPIDR, the Digital Ionogram Database, DIDBase, and IPS Radio and Space Services) have been used for training a NN. The training data set includes all periods of quiet and disturbed magnetic activity. A comprehensive comparison for all conditions (e.g., magnetic storms, levels of solar activity, season, different regions of latitudes, etc.) between foF2 value predictions using the NN based model and International Reference Ionosphere (IRI) model (including both the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) coefficients) with observed values was investigated. The root-mean-square (RMS) error differences for a few selected stations are presented in this paper. The results of the foF2 NN model presented in this work successfully demonstrate that this new model can be used as a replacement option for the URSI and CCIR maps within the IRI model for the purpose of F2 peak electron density predictions. 相似文献
7.
Adolf K. Paul 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(10):51-54
Deviations from horizontal stratification in the F-region can cause significant errors in electron density profile calculations from ionograms. Such situations exist every day during sunrise and sunset. Angle of arrival measurements and studies of the variation of other F-region parameters indicate that gravity waves are frequently strong enough to produce effects of comparable magnitudes. Ray tracing model studies permit a first order estimate of the resulting errors which are largest for the peak parameters. 相似文献
8.
B. W. Reinisch D. Anderson R. R. Gamache X. Huang C. F. Chen D. T. Decker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(12):67-70
On behalf of an URSI Working Group 3 initiated study (VIM), three ionospheric models, IRI, PL/PRISM and FLIP, are compared with electron density profiles derived from ionograms Millstone Hill. Four months of data in 1989/90 were analyzed. For most of the time, N(h) profiles were available every 15 minutes providing a good statistical database for the evaluation of the ionospheric models in terms of diurnal and seasonal variations. 相似文献
9.
C. Zeilhofer M. Schmidt D. Bilitza C.K. Shum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Accurate knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying ionosphere physics. During the last decade Global Navigation Satellite Systems (GNSS) have become a promising tool for monitoring ionospheric parameters such as the total electron content (TEC). In this contribution we present a four-dimensional (4-D) model of the electron density consisting of a given reference part, i.e., the International Reference Ionosphere (IRI), and an unknown correction term expanded in terms of multi-dimensional base functions. The corresponding series coefficients are calculable from the satellite measurements by applying parameter estimation procedures. Since satellite data are usually sampled between GPS satellites and ground stations, finer structures of the electron density are modelable just in regions with a sufficient number of ground stations. The proposed method is applied to simulated geometry-free GPS phase measurements. The procedure can be used, for example, to study the equatorial anomaly. 相似文献
10.
T.L. Gulyaeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):191-194
The shape of electron density profile in the International Reference Ionosphere could be improved significantly if the height hg and electron density Ng of the F region sub-peak inflexion point were entered in the set of the profile standard parameters. To study variations of these important parameters, the N(h) analysis of the statistically-summarized ionograms at the latitudes of 40–80°N of the Eastern hemisphere has been carried out for the two-hours intervals of local time, three seasons (winter, equinox and summer) and two levels of solar activities characterized by Covington indicesF10.7 = 100 and 200. It is shown that the parameters of the inflexion point can be expressed in most cases via the peak parameters of the F2 layer ashg= 0.8 hmF2 and Ng= 0.5 NmF2. 相似文献
11.
T.L. Gulyaeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):13-20
In order to improve its representation of the dependence on time and space of the ionospheric parameters, the International Reference Ionosphere ought to take account of realistic sunrise and sunset conditions in the upper atmosphere. Such input is needed for quite a few parameters for which only day and night values were taken as input in the present IRI. Of the 24 hours of a day, true nighttime comprises a fraction of 37% at an altitude of 300 km and only 26% at 1000 km. In order to demarcate the day/night/day transition periods, the present IRI proposes solar zenith angles of 98° to 120°, depending on the altitude.Electron density profiles, obtained during these periods, have been studied with two data sources: 10 vertical-incidence sounding data observed during the meridional voyages of the research vessel “Akademik Korolev” in the Pacific Ocean; 2° data observed at the South Pole. It is shown that the height of the turning point in the sub-peak F2-layer profile and also the corresponding minimum scale height appear to be independent of latitude, season and index of geomagnetic activity. A method is discussed by which the IRI electron density profiles might be improved, in particular during these hours. 相似文献
12.
Y.V. Ramanamurty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):205-208
The D-region IRI profiles are compared with the direct rocket measurements as well as with ground-based radio observations by a variety of techniques. The characteristics of D-region IRI profiles and the dependence of electron density on solar zenith angle, sunspot number, latitude and season are discussed. The sensitivity of certain reflection coefficients on the height distribution of electron density below 70 km is illustrated with a typical example. For D-region modelling, the results show the importance of simultaneous measurement of reflection and conversion coefficients together with polarization phase over a wide frequency range. 相似文献
13.
K. Rawer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(10):43-49
Using daytime numerical ionospheric profiles from W. Becker's mid-latitude collection, the geometric parameters of 3 or 4 LAY-functions were determined by best fit while all amplitudes were redetermined step by step with a least squares criterion. It appeared that the transition height and scale of the main function are interrelated while all other geometric parameters are independent. Median values for a spring and a summer period are found, and relations with the peak altitude and half-density thickness of the input profile are established. 相似文献
14.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(5):859-866
Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART. The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001 model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles, imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the reconstructed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been obtained for the basis functions from the model itself through SVD. 相似文献
15.
G.A. Moraitis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(10):95-98
The D and E-region electron density profiles obtained by different techniques are compared with the IRI-79 model to see how they fit. The rocket data showed good agreement. However discrepancies between the observed and model values were found especially for solar zenith angle greater than 50 degrees. 相似文献
16.
I.S. Batista J.R. de Souza M.A. Abdu E.R. de Paula 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(12):87-90
We used total electron content (TEC) data measured by Faraday rotation technique over Cachoeira Paulista (22.5°S, 45°W), in Brazil, to study the TEC variations with the solar flux at 10.7 cm (F10.7) and to compare the results with the IRI90 predictions. The data were divided into summer, equinox and winter. During the analysed period F10.7 varied from 66 up to 330. Our data shows that the observed TEC at 1600 LT (around the diurnal maximum) and at 0500 LT (around the diurnal minimum) increases with F10.7 until saturation is reached which occurs at F10.7≈210 to 220 for equinox and summer, and at F10.7≈180 for winter months. Comparison with the IRI90 predictions shows that IRI overestimates the TEC at 0500 LT for all solar flux values. At 1600 LT, IRI overestimates the observed TEC for low solar flux but underestimates it for high solar flux values. 相似文献
17.
Iu.V. Cherniak I.E. Zakharenkova D.A. Dzyubanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI. 相似文献
18.
D. Bilitza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(1):93-95
In the last decade extensive measurements from incoherent scatter stations and from several satellite missions have considerably improved our knowledge of long- and short-term variations in the ionospheric electron temperature. Comparisons with IRI have revealed some shortcomings of this earlier model. It is obvious that in different altitude regions one has to concentrate the modelling efforts on different parameters. Here a model representation is proposed that will facilitate approaches (for the different altitude regions) in one analytic form. 相似文献
19.
L. Hoang K.B. Serafimov I. Kutiev M. Karadimov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(1):65-69
Over 70 ionograms were selected from the ground-based ionosonde in Hanoi, Vietnam at times when the AE-E satellite passed above the station. N(h) profiles were calculated from ionograms and thus compared with the IRI model and local AE-E ion densities. For the purpose of the presentation, 15 profiles were selected to cover all seasons and local times. The comparison shows that the observed daytime N(h) profiles have significantly higher gradients below the F2 peak density while at night the observed and the IRI profiles almost coincide. The difference is more pronounced in summer than in equinox. Wintertime comparisons are quite limited and do not lead to reliable conclusions. NmF2 values taken from the CCIR programme are compared with those observed. The comparison shows that the deviations are not so large. 相似文献