首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.  相似文献   

2.
The source region and propagation mechanism of low latitude whistlers (Geomag. lat. <30°) have puzzled scientific community for last many decades. In view of recent reports, there is consensus on the source region of low latitude whistlers in the vicinity of the conjugate point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200–1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.  相似文献   

3.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

4.
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field.  相似文献   

5.
北斗卫星导航信号采用三个频点工作,可以利用伪距双频组差方法解算电离层电子含量,为实时监视中国区域电离层变化提供新的技术手段.中国中低纬度处于电离层赤道异常变化区,在北纬20°±5°区域时常发生较大梯度的电离层变化.利用北斗实时多频伪距和相位观测数据,采用相位平滑伪距方法计算电离层穿刺点电子含量,分析通过北斗系统GEO卫星监测的电离层周日变化特性;采用多面函数方法拟合中国区域1°×1°分辨率的电离层延迟量,每5min绘制一幅中国区域电离层图,观测区域所有电离层穿刺点拟合残差RMS为2.778TECU;分析北斗系统实时监测中国区域电离层异常情况,当发生电离层异常变化时,相邻两天的VTEC(Vertical Total Electronic Content)峰值相差约60TECU.   相似文献   

6.
Optical signatures of ionospheric disturbances exist at all latitudes on Earth—the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ~40–60°, (2) mid-latitudes (20–40°) and (3) equatorial-to-low latitudes (0–20°).Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere—called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique “receptor” conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth’s upper atmosphere.  相似文献   

7.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

8.
It is important to understand the convection of the inner magnetosphere to fully describe the response of the low- to mid-latitude thermosphere-ionosphere system to geomagnetic storms. Realistic numerical simulations of mid-latitude electric fields suffer from limited knowledge of lower thermospheric winds and ionospheric conductivity on a global scale. Even empirical models of mid-latitude electric fields suffer from the paucity of measurements made by the handful of incoherent scatter radars concentrated in the American-European sector, and the intermittent satellite measurements made in other regions. Thus it would be very useful to show the extent to which Doppler velocity measurements made with the numerous digital ionosondes deployed around the globe can be used to infer F-region electric fields. The monthly average diurnal variation of Doppler velocity measured by a recently commissioned Digisonde at Bundoora (145.1°E, 37.7°S, geographic; 49°S magnetic) is seen to resemble the average diurnal variation of ion drift measured by the incoherent scatter radar at Millstone Hill (71.5°W 42.6°N; 57°N). Moreover, the Bundoora measurements exhibit the nighttime westward perturbation drifts found in Dynamics Explorer-2 ion drift measurements.  相似文献   

9.
We present results of wind measurements near the mesopause carried out with meteor radars (MRs) at Collm (51°N, 13°E), Obninsk (55°N, 37°E), Kazan (56°N, 49°E), Angarsk (52°N, 104°E) and Anadyr (65°N, 178°E) from October 1, 2017 till March 31, 2018. The Collm and Kazan MRs are SKiYMET radars with vertical transmission and radio echo height finding, while the other radars operate with horizontal transmission and without height finding. We paid particular attention to the meridional wind variability with periods of 4–6 days and 9–11 days. The waves with these periods are seen as spots of the wave activity in the wavelet spectra and include oscillations with different periods and different discrete zonal wavenumbers. These wave packets successively propagate as a group of waves from one site to another one in such a way that they are observed at one site and almost disappear at the previous one. The 4–6 wave group includes planetary-scale oscillations (individual spectral components) which have eastward phase velocities and mostly zonal wavenumbers 2 and 3, and the vertical wavelength exceeds 70 km at middle latitudes. The source of the oscillations is the polar jet instability. The wave group itself propagates westward, and the amplitudes of wind oscillations are approximately 5–6 m/s as obtained from the wind data averaged over the meteor zone. The 9–11 day wave set propagates westward as a group and mainly consists of spectral components which have westward phase velocity and zonal wavenumber 1. Amplitudes of these wind perturbations strongly vary from station to station and can reach, approximately, 8 m/s. The vertical wavenumber is 0.014 km−1 as taken from the Kazan and 0.05 km−1 according to the Collm data. We obtained a global view on the waves by using the AURA MLS geopotential data. We found a good correspondence between wave features obtained from the MR wind measurements and the MLS data. To our knowledge, such a wave propagation of planetary wave in the mesosphere/lower thermosphere (MLT) region has so far not obtained much attention.  相似文献   

10.
An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.  相似文献   

11.
利用中国中低纬台站漠河(53.5°N,122.3°E)、北京(40.3°N,116.2°E)、武汉(30.5°N,114.2°E)和三亚(18.3°N,109.6°E)的电离层观测数据,对比分析了4个台站电离层参数在2015年不同季节4个地磁扰动事件期间的变化特征.结果表明,4个磁暴事件期间电离层的响应特征并不完全一致,有着明显的季节特征,春季、夏季和秋季电离层以负相扰动为主,冬季以正相扰动为主.分析发现,中性成分O/N2的降低与电离层负相扰动有关,但三亚地区的负相扰动还与扰动发电机电场相关.正相扰动的机制在不同事件中并不相同,穿透电场可能是引起春季磁暴事件期间电离层短时正暴效应的原因,而冬季长时间的正暴效应则是扰动电场和中性风共同作用的结果.   相似文献   

12.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   

13.
The paper presents an analysis of the ionospheric variability as a function of local time, month, and geomagnetic activity level. The 2003–2020 dataset of peak electron densities (NmF2) from the Irkutsk DPS-4 Digisonde (52.3°N, 104.3°E) was converted into the dataset of the NmF2 disturbances (ΔNmF2) representing the relative (percentage) deviations of the NmF2 from the 27-day running median. The ΔNmF2 dataset was used to calculate root mean square values of ΔNmF2 (σNmF2) by 27-day running averaging. These σNmF2 values were considered as a measure of ionospheric variability. The σNmF2 as function of local time, day of year, and year was the input for building the local empirical model of ionospheric variability based on the linear regression of σNmF2 on the 27-day average daily Ap-index of geomagnetic activity. The paper demonstrates the diurnal-seasonal variations in σNmF2 under low geomagnetic activity (linear regression intercept) as well as the rate of increase/decrease in σNmF2 with increasing Ap (linear regression slope). The obtained diurnal, seasonal, and geomagnetic activity behavior of σNmF2 is compared with previous studies of ionospheric variability.  相似文献   

14.
The contribution of gravity wave (GW) to the initiation/development of spread F during a solar minimum year was investigated through the comparison of the observed precursory parameters and characteristics of the corresponding equatorial spread F (ESF) events. The ionospheric parameters were recorded at the magnetic equatorial station Sao Luis (2.3°S, 44°W, dip latitude 2°S) during March and October 2010. These data were used to estimate the influence of the relative gravity wave amplitude and the ambient ionospheric condition on the diurnal variation of the spread F initiation. The vertical velocity drift indicated a clear control and defines the threshold for the seasonal variability of the ESF occurrence. However, it was insufficient to solely determine or predict the day to day variation of ESF occurrence. Thus, few days with contrasting ambient ionospheric condition and magnitude of GW amplitude were analysed in order to investigate the role of the different precursory factors in the observed diurnal variation of the plasma irregularity development. The density scale length and gravity wave amplitude were shown to immensely contribute to the linear instability growth rate, especially during the days with a low post-sunset rise. Thus, the experimental observations have demonstrated the strong inter-dependence between the precursory factors and they have also highlighted the probable control of the ESF morphology.  相似文献   

15.
The realistic model of Quegan et al. has been used to investigate the convection paths of ionospheric plasma at 300 km altitude, for different polar cap radii and in both hemispheres. Taking the Northern magnetic dip pole to be at a co-latitude of 11° and the Southern magnetic dip pole at a co-latitude of 23°, these paths are presented in a Sun-Earth frame, with the position of the Earth's axis fixed as it is on 21 March, as polar plots centred on the magnetic pole. There are marked hemispheric differences between 13 and 23 L.T., particularly near the stagnation region at 18 to 21 L.T., but only minor differences between 00 and 12 L.T., when the radius of the polar cap exceeds 12°. For a smaller polar cap, the differences between the hemispheres are small at all local times. The time taken to perform a complete circuit is most dependent on the polar cap radius, and most variable - between 15 and 36 h - for convection paths starting near 60° latitude. The time that plasma convecting from noon to near midnight across the Northern polar cap spends within the 10° co-latitude circle increases from 6 h, for a polar cap radius of 10°, to 11.5 h at 17°. These results are compared and contrasted with other model calculation results and with some ground-based and satellite observations of plasma densities at high latitudes.  相似文献   

16.
A comparison is made between the subpeak electron density profiles, obtained at selected local hours by vertical ionospheric sounding at the ionospheric station at Sofia (42.6°N; 23.3°E) and the IRI profiles for spring, summer, winter and two levels of solar activity (R = 10 and 100). It is demonstrated that the ionospheric profiles above Sofia are in rather good agreement with the values computed with IRI.  相似文献   

17.
FORMOSAT-5 satellite was launched into a sun-synchronous orbit at 720 km altitude with 98.28° inclination on 25 August 2017. The onboard scientific payload, Advanced Ionospheric Probe (AIP) is capable of measuring topside ionospheric ion density, cross-track flow velocities, ion composition and temperature, and electron temperature. Initial observations of nighttime midlatitude ionospheric density and vertical flow velocity variations at 2230 LT sector during a few quiet magnetic days in December 2017 are studied here. Longitudinal density variations in the equatorward edge of midlatitude ionospheric trough (MIT) region are noticed. Accompanied with this density variation, the vertical flow velocities also behave differently. Although the density difference has been stated due to zonal wind effect related to the declination of the geomagnetic field lines, the vertical flow velocity variation seems to play the opposite role. All these density and vertical flow observations in the northern winter hemisphere can only be explained by the longitudinal differences in the diffusion velocity coming down from the protonsphere (plasmasphere). In addition, the hemispheric asymmetry in the vertical flow velocity can also be explained by the interaction between the topside ionosphere and the protonsphere. The observed vertical flow variations near MIT at different longitudes should present a new potential tool for the study of MIT formation.  相似文献   

18.
19.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

20.
The present work displays the observations of an afternoon detached aurora along with ionospheric high-latitude trough. The event was observed by DMSP F17 on 19 September 2014. The afternoon detached aurora was isolated from the auroral oval and was located between 12:00–18:00 magnetic local time (MLT) and 65–70° geomagnetic latitude (MLAT). Particle observations indicate that the afternoon detached aurora was produced by energetic ring current ions with energies above ~10 keV where the main ion energy was likely to be above the upper limit of DMSP measurement (~30 keV). Magnetometer observation from the ground implies that the energetic ions were likely scattered by EMIC waves. Both the detached aurora and the auroral oval are found to be well inside the high-latitude trough with MLAT between ~64° and ~76° (68–80° GLAT). The auroral oval corresponds to a westward (sunward) plasma drift. It is expected that the westward drift transports the low-density plasma in the nightside toward the dayside, leading to the high-latitude trough formation. The afternoon detached aurora was well equatorward of the high-latitude trough, and the corresponding plasma drift was nearly zero. The plasma associated with the detached aurora is expected to be stagnant, and broaden the high-latitude trough equatorward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号