首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Absolute zenith intensities of the atomic oxygen fine structure emission at 63 μm were measured above Kiruna, Sweden, on 9 December 1981 in the altitude regime of 85 km to 237 km. The measured data are compared with theoretical predictions for this emission. Both local thermodynamic equilibrium (LTE) and non-LTE conditions were assumed for the model intensity calculations. The importance of the 63 μm emission as a cooling mechanism of the thermosphere is briefly discussed.  相似文献   

2.
Ozone density profiles between 35 and 65 km altitude are derived from scattered sunlight limb radiance spectra measured by the SCIAMACHY instrument on the Envisat satellite. The method is based on the inversion of normalized limb radiance profiles in the Hartley absorption bands of ozone at selected wavelengths between 250 and 310 nm. It employs a non-linear Newtonian iteration version of Optimal Estimation (OE) coupled with the radiative transfer model SCIARAYS. The limb scatter technique combined with a classical OE retrieval in the short-wave UV-B and long-wave UV-C delivers reliable results as shown by a first comparison with MIPAS V4.61 profiles yielding agreement within 10% between 38 and 55 km. An overview of the methodology and an initial error analysis are presented. Furthermore the effect of the solar proton storm between 28 October and 6 November 2003 on the ozone concentration profiles is shown. They indicate large depletion of ozone of about 60% at 50 km in the Northern hemisphere, a weaker depletion in the Southern hemisphere and a dependence of the depletion on the Earth’s magnetic field.  相似文献   

3.
GOMOS (Global Ozone Monitoring by Occultation of Stars) and MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) are remote sensing instruments on board the European Space Agency’s Envisat satellite. GOMOS and MIPAS have been designed for observations of stratospheric and mesospheric constituents, including ozone and nitrogen dioxide. Both instruments have a good global coverage of observations and can provide data also from the polar regions. In this paper, we compare night-time NO2 data from GOMOS with those from MIPAS. We present statistics of selected sets of data spanning from the year 2003 to 2006. The results for low-to-mid latitudes show that the two instruments are in a good agreement in the middle stratosphere, the differences being typically less than 5%. In the upper stratosphere, GOMOS observations generally show 15% higher values than those from MIPAS. The bias is in virtually all cases smaller than the combined systematic error of the measurements, giving great confidence in the GOMOS and MIPAS data quality. The result for high mesospheric NO2 mixing ratios observed in the polar regions during winter times indicate a good agreement between GOMOS and MIPAS. In the mesosphere, the difference is less than 35% and smaller than the systematic error. Due to the high mesospheric signal, MIPAS sensitivity decreases in the stratosphere which results in larger differences between the two instruments.  相似文献   

4.
The SCIAMACHY instrument on board Envisat is able to measure nearly all vibrational transitions of mesospheric hydroxyl – from the ultraviolet to the near infrared spectral region.

In this paper, we analyze SCIAMACHY limb emission data in the 1000–1750 nm spectral region by means of a new vibrational non-LTE model of OH. Several hydroxyl hotbands are identified. Vibrational non-LTE model calculations applying different collisional relaxation models are able to reproduce the measured spectra. Best agreement between model calculations and measured spectra is obtained, if a combination of multiquantum and step ladder single-quantum relaxation model is applied. Emissions from the OH(v = 9) vibrational state are used to derive chemical heating rates from the SCIAMACHY spectra. Instantaneous heating rates are in the order of 10 K/day.  相似文献   


5.
The “VIS-channel” (the channel is sensitive between about .4 and 1.1 μm wavelength) of the European geostationary satellite Meteosat-2 is calibrated by the method of “vicarious calibration by means of calculated radiances”. The calibration constant, which connects the 6-bit-counts of the VIS-channel of the Meteosat-2 with the corresponding “effective radiances” is determined to be cSAT = 2.3 W·m?2·sr?1/count with an accuracy of ± 10% (preliminary values). The calibration constant is valid for “gain 0” and the period until October 1981. The result means, that the VIS-channel of Meteosat-2 at the beginning of its lifetime is about 15% more sensitive than that of Meteosat-1 was at its end.  相似文献   

6.
The plausible mechanisms of cooling of the nightside Venus' thermosphere are analysed with the aid of the model of the atmospheric heat budget that incorporates, in addition to thermal conduction and IR radiation in the 15 μ band of CO2, heating and cooling due to global scale winds, eddy turbulence, and IR radiation in the rotational bands of H2O and CO, as well as the 63 μ line of atomic oxygen. The H2O mixing ratio and parameters of turbulence required for cooling of the thermosphere down to the observed low temperatures are evaluated.  相似文献   

7.
空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、Kp及Ap指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。  相似文献   

8.
Spaceborne lidar measurements and retrievals are simulated using realistic errors in signal, conventional density information, atmospheric transmission, and lidar calibration. We find that by day, independent analysis of returns at wavelengths of 0.53 and 1.06 μm yields vertical profiles (0.1- to 1-km resolution) of tenuous clouds and boundary-layer, Saharan, and strong volcanic stratospheric aerosols to accuracies of 30% or better, provided particulate optical depth does not exceed ?0.3. By night all these constituents are retrieved, plus noctilucent clouds, mesospheric aerosols, and upper tropospheric/nonvolcanic stratospheric (UT/NVS) areosols. Molecular-density uncertainties are a dominant source of error for UT/NVS retrievals.To reduce these errors and also to provide density and temperature profiles, we developed a procedure that combines returns at 0.35 and 1.06 μm. This technique significantly improves UT/NVS aerosol retrieval accuracy and also yields useful density and temperature profiles there. Strong particulate contamination limits the technique to the cloud-free upper troposphere and above.  相似文献   

9.
The turbulent diffusivity around the turbopause is deduced from the parameters of ionospheric sporadic E /Es/ and atmospheric models assuming the validity of the wind-shear theory of mid-latitude sporadic E. It has been found that during circulation disturbances in the lower thermosphere connected with stratospheric warmings the turbulent diffusivity appears to decrease. The results obtained so far indicate that the characteristic events of the winter months are shown not only by the large scale dynamics in the lower thermosphere, but also by the small scale phenomena and thus the turbulent diffusivity could contribute to the development of the winter anomaly.  相似文献   

10.
The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive a climatology of cloud radiative properties from these radiances. For this purpose, a pilot study of cloud analysis algorithms was initiated to define a state-of-the-art algorithm for ISCCP. This study compared the results of applying the nine different algorithms to the same satellite radiance data. The comparison allowed for a sharper understanding of the process of detecting clouds and shows that all algorithms can be improved by better information about clear sky radiance values (essentially equivalent to surface property information) and by better understanding of cloud size distribution variations. The dependence of all methods on cloud size distribution led to selection of an advanced bispectral threshold technique for ISCCP because this method is currently better understood and more developed. Further research on cloud algorithms is clearly suggested by these results.  相似文献   

11.
借助OH夜气辉辐射的光化学模式,由OH夜气辉辐射反演中间层-低热层区域的原子氧数密度时,输入参数的不确定性将导致反演得到的原子氧数密度具有不确定性.以在sudden death猝灭模式下通过OH(8-3)振动带体辐射率反演原子氧数密度为例,分别研究了大气参数和OH气辉辐射率的不确定度引起的反演不确定度、化学反应速率常数的不确定度引起的反演不确定度,以及所有输入参数的不确定度共同引起的反演不确定度,找出其不确定度对反演结果影响最大的参数.结果表明,三种反演不确定度均随着高度的升高而增大,温度和体辐射率的不确定度对第一种反演不确定度的贡献最大,反应速率常数b(8)和A(8-3)、的不确定度对第二种反演不确定度的贡献最大.  相似文献   

12.
The MAP/WINE winter 1983/84 is studied using the LF-MF-HF A3 absorption and 5 kHz atmospherics observed in Czechoslovakia and some other data. The “normal” winter anomaly in Central Europe is developed well in this winter (maximum in mid-January) and appears to be “free of geomagnetic contamination”. The stratospheric warming activity and related changes of prevailing zonal wind in the lower thermosphere in February and March 1984 are followed by decreases of absorption of radio waves. It agrees with our results from preceding winters /1/.  相似文献   

13.
During recent years, special attention has been paid to understanding the background circulation of the middle atmosphere. Particularly in the mesosphere/lower thermosphere (MLT) region, this has involved including data from a range of new radar measurements. It has also involved the comparison of existing empirical middle atmosphere wind models, such as CIRA-86 and HWM-93 to the new data. This has led to the construction of empirical models of MLT winds such as the Global Empirical Wind Model (GEWM). Further investigations are aimed at the construction of new empirical and semi-empirical wind models of the entire middle atmosphere including these new experimental results. The results of a new wind climatology (0–100 km) are presented here, based upon the GEWM, a reanalysis of stratospheric data, and a numerical model which is used to fill the gap between data from the stratospheric and MLT regions.  相似文献   

14.
A differential emission measure technique is used to determine flare spectra using solar observations from the soft X-ray instruments aboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics and Solar Radiation and Climate Experiment satellites. We examine the effect of the solar flare soft X-ray energy input on the nitric oxide (NO) density in the lower thermosphere. The retrieved spectrum of the 28 October 2003 X18 flare is input to a photochemical thermospheric NO model to calculate the predicted flare NO enhancements. Model results are compared to Student Nitric Oxide Explorer Ultraviolet Spectrometer observations of this flare. We present results of this comparison and show that the model and data are in agreement. In addition, the NO density enhancements due to several flares are studied. We present results that show large solar flares can deposit the same amount of 0.1–2 and 0.1–7 nm energy to the thermosphere during a relatively short time as the Sun normally deposits in one day. The NO column density nearly doubles when the daily integrated energy above 5 J m−2 is doubled.  相似文献   

15.
It is often observed that the stratospheric and mesospheric temperature structure undergoes transient disturbances from its averaged steady-state behavior. The causes may be traceable to gravity waves, planetary waves, solar proton and relativistic electron precipitation, etc. We examine the theoretical time behavior of the atmospheric temperature following the cessation of such heating phenomena as it relaxes toward its quiescent steady-state value. We also study the time-dependent response during a model stratospheric-warming/mesospheric-cooling event. In particular, we investigate the roles of eddy heat conduction, non-LTE cooling in the 15μm CO2 band, and an ambient vertical wind, and their relative importance as they depend upon altitude and time, in modifying temperature changes in this region.  相似文献   

16.
The northern Sinai is a sandy semi-desert. Severe overgrazing and other anthropogenic pressures contribute to an extremely sparse vegetative cover. A 6×6 km area was fenced off in the summer of 1974, constituting an exclosure from the grazing herds and from harvesting of plants for firewood. The vegetation in this exclosure recovered rapidly. In this study, radiances and surface temperatures of the vegetated exclosure and of the surrounding anthropogenically impacted terrain were monitored for the period March–September 1981, using NOAA-6 satellite. This satellite carries the Advanced Very High Resolution Radiometer (AVHRR) that measures visible and solar infrared radiances and also radiation temperatures at 11 μm band. In the digital images, the exclosure forms an easily recognized square, darker in the visible and solar infrared AVHRR channels than the surroundings. We concentrated on the corner in which there was no anthropogenic activity. Based on the ratio of the radiance over the exclosure to that over the surrounding terrain, the protrusions parameter s (vertical projection of the protrusions per unit area) has been estimated. The average value of s for the various satellite passes is 0.20 as measured in the visible channel and 0.18 as measured in the solar infrared. The radiation temperatures of the exclosure and of the surrounding terrain were analyzed. The radiation temperatures of the vegetated exclosure (sand with protruding bushes) are higher (by up to 2.5°K) than those of the surrounding terrain (that can be approximately regarded as bare sand). It is concluded that in an arid climate, under the semi-dormant conditions of vegetation (which prevail at all times except for the desert-bloom period, after a rain) the evapotranspiration is low, so that its effect on the surface temperatures is very small. Under these conditions, the surface temperatures are controlled by the surface albedo and the air flow at the surface.  相似文献   

17.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   

18.
The results of a cross-spectral analysis between monthly mean temperatures at 100 mb, 50 mb and 30 mb over the equator and the corresponding monthly mean BUV total ozone at different latitude zones are presented for the period 1970–1977. Significant squared coherences between total ozone and 50 mb equatorial temperatures at 26 months are only found between 5 degrees on each side of the equator, between 45 deg N and 55 deg N and at 45 deg S. At latitudes were the QBO in stratospheric temperature diminishes so does the QBO in total ozone (i.e. close to 35 deg N and 15 deg S). Over subtropical latitudes there is a tendency towards a more biennial oscillation in total ozone (not correlated with the equatorial QBO in stratospheric temperatures) and at 65 deg N and 65 deg S total ozone oscillates at periods greater than the equatorial QBO.  相似文献   

19.
A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.  相似文献   

20.
Transient thermal behavior of stratospheric balloons at float conditions   总被引:2,自引:0,他引:2  
The prediction of the thermal behavior of stratospheric balloons under varying environmental conditions is one of the key issues in the design and flight test of balloons. In this paper, a three-dimensional transient thermal model is developed to predict the thermal behavior of spherical stratospheric balloons. The diurnal variations of the skin and lifting gas temperatures at float conditions are discussed in detail. The further studies on the thermal behavior of stratospheric balloons are presented also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号