首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of climber transit on the space elevator dynamics   总被引:1,自引:0,他引:1  
The space elevator offers an alternate and efficient method for space travel. It will have two main components. The first component is the tether (or the ribbon), which extends from the Earth to an equatorial satellite at an altitude beyond the geostationary orbit, and is fixed to a base on the surface of the Earth at its lower end. The second component is the climber, which scales the ribbon, transporting payloads to space. An important issue for effective operation of the space elevator will be to understand its dynamics. This paper attempts to develop a realistic and yet simple planar model for this purpose. The basic response of the ribbon to climber transit is determined. Both analytical and numerical results are presented. Specific climbing procedures are devised based on these results so as to minimize the adverse effects of climber transit on the ribbon.  相似文献   

3.
The links between Earth and space exploration occur across a broad spectrum, from the use of satellite technology to support environmental monitoring and habitat protection to the study of extreme environments on Earth to prepare for the exploration of other planets. Taking the view that Earth and space exploration are part of a mutually beneficial continuum is in contrast to the more traditionally segregated view of these areas of activity. In its most polarized manifestation, space exploration is regarded as a waste of money, distracting from solving problems here at home, while environmental research is seen to be introspective, distracting from expansive visions of exploring the frontier of space. The Earth and Space Foundation was established in 1994 to help further mutually beneficial links by funding innovative field projects around the world that work at the broad interface between environmental and space sciences, thus encouraging the two communities to work together to solve the challenges facing society. This paper describes the work of the foundation and the philosophy behind its programmes.  相似文献   

4.
5.
This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.  相似文献   

6.
Peter Creola 《Space Policy》1996,12(3):193-201
Current growth and consumption rates on Earth cannot be sustained into the future. Space technology is already a vital tool in the management of the planet and we should look at it to mitigate some of the problems we face. However, this should not include colonization of interstellar space. Rather we should focus on using solar energy from space and on mining asteroids, both of which would be feasible if the Moon was developed as a space base and power station. The most difficult and expensive part of getting into space is escaping Earth's gravity - something that could be avoided once a presence was established on the Moon. A lunar base would also provide the obvious site from which to reach GEO, travel to Mars or back to Earth and, ultimately, to explore the further reaches of the Solar System.  相似文献   

7.
With the beginning of space era, a new branch of medicine has arisen and has been developing along with human exploration of outer space. And even though space medicine mainly faces the same problems as traditional medicine--cosmonauts health care and their high efficiency--this branch, has its own features, associated with the unusual factors of space flight, of which weightlessness is the major one. During the development of manned cosmonautics (duration of a human stay in space has reached already 438 days), methods of cosmonauts medical support and monitoring of their condition have been developed, knowledge of human possibilities and methods of process of organism adaptation to various and frequently severe conditions of external environment have increased. All this led to the fact that nowadays space medicine can become useful for improvement of human health care not only in space but also on the Earth. Moreover, the problem of implementation of cosmonautics achievements, and in particular of space medicine, in practice of public health care presents one of the most important issues concerning human health care. It is also connected with public opinion which is more and more concerned about the efficiency of significant expenses on space activities, especially lately. People often are set by the questions: what has space given, what fruits has space research provided to mankind, which results of this research can be used on the Earth already today for improvement of their life, for discussion of many difficult earthly problems? In terms of using cosmonautics possibilities, its achievements for health care and treatment, it is possible to define a few branches, in which purposeful studies are carried out.  相似文献   

8.
Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following:1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions.2. Space launches are benign with respect to environmental impacts.3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change.4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space.5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products.At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of the data acquisition step, which is at the very beginning of the information stream leading to decision and action, will enhance coherence in the information stream and strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions in the context of sustainable management of Earth's resources. Taking each assumption in turn, we find the following:(1) Space debris may limit access to Low Earth Orbit over the next decades.(2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products.(3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied.(4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest.(5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies – e.g. NASA, ESA, CNES – it seems prudent to combine resources.  相似文献   

9.
Nick Kanas 《Acta Astronautica》2011,68(5-6):576-581
Current planning for the first interplanetary expedition to Mars envisions a crew of 6 or 7 people and a mission duration of around 2.5 years. However, this time frame is much less than that expected on expeditions to the outer solar system, where total mission durations of 10 years or more are likely. Although future technological breakthroughs in propulsion systems and space vehicle construction may speed up transit times, for now we must realistically consider the psychological impact of missions lasting for one or more decades.Available information largely deals with on-orbit missions. In research that involved Mir and ISS missions lasting up to 7 months, our group and others have studied the effects of psychological and interpersonal issues on crewmembers and on the crew-ground relationship. We also studied the positive effects of being in space. However, human expeditions to the outer planets and beyond will introduce a number of new psychological and interpersonal stressors that have not been experienced before. There will be unprecedented levels of isolation and monotony, real-time communication with the Earth will not be possible, the crew will have to work autonomously, there will be great dependence on computers and other technical resources located on board, and the Earth will become an insignificant dot in space or will even disappear from view entirely.Strategies for dealing with psychological issues involving missions to the outer solar system and beyond will be considered and discussed, including those related to new technologies being considered for interstellar missions, such as traveling at a significant fraction of the speed of light, putting crewmembers in suspended animation, or creating giant self-contained generation ships of colonists who will not return to Earth.  相似文献   

10.
The Central and Eastern Europe are characterized by a high theoretical and scientific level in space research and technology, including remote sensing, but inexperience in practical applications. The emerging private sector lacks management experience and needs appropriate training. Other constraints are inadequate administrative structures, a lack of coordination, and an outdated technology in general. In his report on the results of a study carried out for the European Commission, consultant and emeritus professor of the International Institute for Aerospace Survey and Earth Sciences, Caesar Voûte, outlines the new forms of European and regional cooperation being promoted. Agriculture, yield prediction and agricultural statistics, land use studies, environmental monitoring and environmental management are identified as future high priority operational applications of remote sensing and geographical information systems (GIS). Hazard management and marine observations also need to be developed.  相似文献   

11.
Trinh EH 《Acta Astronautica》2003,53(4-10):317-327
The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities.  相似文献   

12.
To meet the future needs of energy on Earth, the transmission of solar power from space is being extensively studied. Since the power station will occupy a position in the geostationary orbit and will use radio frequency spectrum for transmission of energy to Earth, the relative benefits of space solar power and space communications should be considered. The resource allocation of orbit-spectrum to a power station requires a sacrifice from space communications as they both utilize similar limited resources. The power station is to energy what communication is to information. While the cost of energy is going up, the cost of information processing, storage, sharing and transmission is decreasing. Also, increased means of communication are used as a measure of energy conservation. With the advent of computer communication and the Large Scale Integrated (LSI) microprocessors, the technique of multiple access, message switching and satellite switching can be cost-effectively combined. The computer-satellite communication will allow information resource sharing among large numbers of users besides the conventional application of space communications. Since space communication means work effectively in many other areas where ultimate energy use and conservation is possible, the space solar power will not be able to compete or substitute on the basis of equality and social benefits. But, as the transmission technology is similar for both areas, the R & D effort for solar power will certainly increase efficiency and reduce cost for space communications.  相似文献   

13.
The concept of the System for the Observation of Daytime Asteroids (SODA system) has been developed, the purpose of which is to detect at least 95% of hazardous celestial bodies larger than 10 m in size that fly towards Earth from the Sun side. Spacecraft, equipped with the optimum version, which has three wide-angle optical telescopes of small aperture (20–30 cm) will be placed in a halo orbit around the L1 libration point of the Sun–Earth system. This will provide a warning on the hazardous object, approaching from the Sun side, and will allow one to determine the orbit and the point of body entering Earth atmosphere to a sufficient accuracy, at least a few hours before the body collides with Earth. The requirements to the system are considered, the results of a preliminary design of the set of instruments have been described, the areas of visibility are calculated, and the versions of data transmission modes have been proposed. It has been shown that, in cooperation with other (particularly ground-based) projects aimed to observing objects flying from the night sky side, it is possible to detect in advance all hazardous bodies in the near-Earth space larger than 10 m in size that approach Earth from almost any direction.  相似文献   

14.
Corbet RH 《Astrobiology》2003,3(2):305-315
If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.  相似文献   

15.
Global Monitoring for Environment and Security (GMES) is an idea which originated during a meeting in Baveno, Italy, in May 1998, which generated a call for Europe to get its act together in the field of environmental monitoring from space, to define a well articulated strategy in this area and to build upon its excellent scientific research community, its proven technical prowess in Earth observation from space and its nascent political will to express its objectives in international fora related to climate change and other global environment topics. While Europe was already active in the most advanced areas of global monitoring, its rather uncoordinated efforts (even within the European Commission) lacked visibility and did not appear to fit into a clearly established strategy. The ‘Baveno initiative’ was an attempt to remedy this situation and find a place within a developing ‘European Strategy for Space’, which requires ESA and the European Union to work more closely together. GMES was extended to include the ‘security’ (in its wider sense) aspects of global monitoring, a move that produced a number of questions and misunderstandings, but which allowed many in Europe to realize that monitoring the activities of the Earth’ land masses, oceans and atmosphere do include a security dimension. GMES will eventually incorporate an implementation plan which will call upon various monitoring techniques, ambitious modelling projects and connections with society's more urgent requirements with respect to environmental protection and prevention or reduction of risks related to natural hazards. This will entail significant efforts to inform the user communities and to convince them of the relevance and usefulness of this initiative. It will also provide a sound basis for the European contribution to the new initiative for improved coordination of strategies and systems for Earth observations called for by the July 2003 Earth Observation Summit.  相似文献   

16.
The Mars Sample Return Project.   总被引:1,自引:0,他引:1  
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles.  相似文献   

17.
The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues—e.g. fitting in with existing organizations and securing stable funding—some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come.  相似文献   

18.
Most plausible futures for space exploration and exploitation require a large mass in Earth orbit. Delivering this mass requires overcoming the Earth's natural gravity well, which imposes a distinct obstacle to any future space venture. An alternative solution is to search for more accessible resources elsewhere. In particular, this paper examines the possibility of future utilisation of near Earth asteroid resources. The accessibility of asteroid material can be estimated by analysing the volume of Keplerian orbital element space from which Earth can be reached under a certain energy threshold and then by mapping this analysis onto an existing statistical near Earth objects (NEO) model. Earth is reached through orbital transfers defined by a series of impulsive manoeuvres and computed using the patched-conic approximation. The NEO model allows an estimation of the probability of finding an object that could be transferred with a given Δv budget. For the first time, a resource map provides a realistic assessment of the mass of material resources in near Earth space as a function of energy investment. The results show that there is a considerable mass of resources that can be accessed and exploited at relatively low levels of energy. More importantly, asteroid resources can be accessed with an entire spectrum of levels of energy, unlike other more massive bodies such as the Earth or Moon, which require a minimum energy threshold implicit in their gravity well. With this resource map, the total change of velocity required to capture an asteroid, or transfer its resources to Earth, can be estimated as a function of object size. Thus, realistic examples of asteroid resource utilisation can be provided.  相似文献   

19.
The potential benefits to humankind of space exploration are tremendous. Space is not only the final frontier but is also the next marketplace. The orbital space above Earth offers tremendous opportunities for both strategic assets and commercial development. The critical obstacle retarding the use of the space around the Earth is the lack of low cost access to orbit. Further out, the next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next 30 years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. Both of these missions will change the outlook and perspective of every human being on the planet. However, these missions are expensive and extremely difficult. Chemical propulsion has demonstrated an inability to achieve orbit cheaply and is a very high-risk option to accomplish the Mars mission. An alternative solution is to develop a high performance propulsion system. Nuclear propulsion has the potential to be such a system. The question will be whether humanity is willing to take on the challenge.  相似文献   

20.
《Acta Astronautica》2013,82(2):411-418
The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号