首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

2.
The CELIMENE space experiment (CELulles en Impesanteur: Muscle Et Neurone Embryonnaires) was devoted to the study of the influence of gravity on the differentiation, the organisation and the maintenance of the highly specialised nervous system and muscular system. CELIMENE was carried out during the first flight of the IBIS hardware (Instrument for BIology in Space) with the fully automatic space mission PHOTON 10 in February 1995. Using the amphibian Pleurodeles waltl as a vertebrate model, in vitro experiments involved immunocytochemical detection of glial-, neuronal- and muscle-specific markers, and neurotransmitters in cells developed under conditions of microgravity compared with 1g controls, on-board and on the ground. We observed that the altered gravity did not disturb cell morphogenesis or differentiation.  相似文献   

3.
The German Infrared Laboratory GIRL is a liquid helium-cooled telescope with four focal plane instruments dedicated to astronomical and aeronomical observations.Hardware tests were performed with a thermal model of the cryostat and other components as active phase separator, optical switches, main mirror, baffle etc.In the test phase the thermal behavior of the system was checked out in a step by step procedure. The timeline of the individual experiments and of two representative orbits were simulated by electrical heaters. Temperatures and helium flow rates for the different operation modes were measured.An outlook shows that the project phase in 1982 is dedicated to further development and tests of hardware and complete definition and specification of all GIRL systems.  相似文献   

4.
The changes of [Ca2+]i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station "Salyut 6". These results: 1) indicate that observed Ca(2+)-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca2+ influx through membranes. In model presented, I propose that Ca(2+)-activated channels in plasma membrane in response to microgravity allow the movement of Ca2+ into the root cells, causing a rise in cytoplasmic free Ca2+ levels. The latter, in its turn, may induce the inhibition of a Ca2+ efflux by Ca(2+)-activated ATPases and through a Ca2+/H+ antiport. It is possible that increased cytosolic levels of Ca2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca2+]i. Plant cell can response to such a Ca2+ rise by an enhancement of membranous Ca(2+)-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca(2+)-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca2+ to plant cell.  相似文献   

5.
The crystal growth under near-zero gravity conditions may lead to materials of better crystalline and compositional perfection [1]. Unidirectional solidification of metals is a part of Czechoslovak programme on space research within the framework of Interkosmos [2]. On the model-like systems of metals grown in the space we want to study the effect of foreign atoms on the surface tension and the lattice defects density. The objectives of our ground-based and space experiments are discussed.  相似文献   

6.
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.  相似文献   

7.
Eggs of Carausius morosus were exposed to spaceflight conditions in two spaceflight missions, the German 7 day Spacelab Mission D1 and the Soviet 12.56 day Biosatellite Mission "COSMOS 1887". During spaceflight the eggs continued their development. Eggs of five different ages representing different sensitivity to radiation and different capacity to regeneration were used to investigate the influence of cosmic radiation and/or microgravity on insect development. Using the Biostack concept--eggs in monolayers sandwiched between nuclear track detectors--and the 1 g reference centrifuge of BIORACK in D1 we were able to separate effects of heavy ions of the cosmic radiation from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, embryonic and larval growth kinetics and anomaly frequencies were determined. Microgravity leads to a reduced hatching rate of eggs exposed in the early stages of development. Hatching was normal in eggs which were exposed on the 1 g reference centrifuge. Hits by heavy ions caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high frequency of anomalies. These results obtained from the Spacelab Mission D1, were confirmed in an experiment onboard of COSMOS 1887. In addition to the previous analysis, embryonic development before hatching was followed which showed no major difference between flight and the ground control specimens. Since a reconfirmation of reduced hatching rates was observed in COSMOS 1887, too, the above results suggest some microgravity induced functional impairment of the hatching activity, rather than blockage in embryonic development.  相似文献   

8.
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.  相似文献   

9.
10.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

11.
Because of their rapid development, amphibians have been important model organisms in studies of how microgravity affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of microgravity on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in microgravity is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in microgravity are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in microgravity. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in microgravity is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se.  相似文献   

12.
This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.  相似文献   

13.
The X-ray spectrometer (XRS) on the SELENE (SELenological and ENgineering Explorer) spacecraft, XRS, will observe fluorescent X-rays from the lunar surface. The energy of the fluorescent X-ray depends on the elements of which the lunar soil consists, therefore we can determine elemental composition of the upper most lunar surface. The XRS consists of three components: XRF-A, SOL-B, and SOL-C. XRF-A is the main sensor to observe X-rays from the lunar surface. SOL-B is direct monitor of Solar X-ray using Si-PIN photodiode. SOL-C is another Solar X-ray monitor but observes the X-rays from the standard sample attached on the base plate. This enables us to analyze by a comparative method similar to typical laboratory XRF methods. XRF-A and SOL-C adopt charge coupled device as an X-ray detector which depletion layer is deep enough to detect X-rays. The X-ray spectra were obtained by the flight model of XRS components, and all components has been worked well to analyze fluorescent X-rays. Currently, development of the hardware and software of the XRS has been finished and we are preparing for system integration test for the launch.  相似文献   

14.
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.  相似文献   

15.
The in vivo model our laboratory uses for studies of cartilage differentiation in space is the rat growth plate. Differences between missions, and in rat age and recovery times, provided differing results from each mission. However, in all missions, proliferation and differentiation of chondrocytes in the epiphyseal plate of spaceflown rats was altered as was matrix organization. In vitro systems, necessary complements to in vivo work, provide some advantages over the in vivo situation. In vitro, centrifugation of embryonic limb buds suppressed morphogenesis due to precocious differentiation, and changes in the developmental pattern suggest the involvement of Hox genes. In space, embryonic mouse limb mesenchyme cells differentiating in vitro on IML-1 had smoother membranes and lacked matrix seen in controls. Unusual formations, possibly highly ruffled membranes, were found in flight cultures. These results, coupled with in vivo centrifugation studies, show that in vivo or in vitro, the response of chondrocytes to gravitational changes follows Hert's curve as modified by Simon, i.e. decreased loading decreases differentiation, and increased loading speeds it up, but only to a point. After that, additional increases again slow down chondrogenesis.  相似文献   

16.
Potential application of non invasive surface temperature measurements in Material Science and Fluid Science microgravity experiments is reviewed by analyzing the experiments that can benefit of thermographic techniques and by identifying the parameters that can be directly or indirectly measured. The hardware and software requirements of a thermographic equipment are indicated for a system of use in space.

The capabilities and the relevant features are described of a computerized system, conceived and breadboarded in connection to ESA activities related to Fluid Science Facilities.  相似文献   


17.
The correlation between oscillations of flow and temperature of the Marangoni convection in a cylindric floating zone are studied. Photographs of the oscillating flow patterns are taken by triggering with a thermocouple signal of the temperature oscillation to reveal the frequency and phase correlations. Whilst both frequencies coincide, phase shift between temperature and flow oscillations exists.  相似文献   

18.
The effects of microgravity on Jurkat cells--a T-lymphoid cell line--was studied on a sounding rocket flight. An automated pre-programmed instrument permitted the injection of fluorescent labelled concanavalin A (Con A), culture medium and/or fixative at given times. An in-flight 1 g centrifuge allowed the comparison of the data obtained in microgravity with a 1 g control having the same history related to launch and re-entry. After flight, the cells fixed either at the onset of microgravity or after a or 12 minute incubation time with fluorescent concanavalin A were labelled for vimentin and actin and analysed by fluorescence microscopy. Binding of Con A to Jurkat cells is not influenced by microgravity, whereas patching of the Con A receptors is significantly lower. A significant higher number of cells show changes in the structure of vimentin in microgravity. Most evident is the appearance of large bundles, significantly increased in the microgravity samples. No changes are found in the structure of actin and in the colocalisation of actin on the inner side of the cell membrane with the Con A receptors after binding of the mitogen.  相似文献   

19.
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.  相似文献   

20.
The swimming behaviour of two ciliate species, Paramecium caudatum and Didinium nasutum was analyzed under microgravity and hypergravity. In Paramecium the differences between former upward and downward swimming rates disappeared under weightlessness. At microgravity the swimming rates equalled those of horizontally swimming cells at 1g. In contrast, the swimming rates of Didinium increased under microgravity conditions, being larger than horizontal swimming rates at 1g. These findings are in accordance with a hypothesis of gravireception in ciliates based on electrophysiological data, which considers the different topology of mechanoreceptor channels in theses species. The hypothesis received further support by data recorded under hypergravity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号