首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Direct and indirect observations of interplanetary shock waves have been extended to the study of (i) the shock structure itself; (ii) the disturbed solar wind in its wake; (iii) additional discontinuities such as reverse shocks and pistons; and (iv) the shock's kinematic behavior. The last item — the trajectory — has benefited by the procedure (suggested by Pintér) of matching type II radio drift-inferred velocities with indirectly-inferred initial velocities found from at least two successive measurements in space. The significance of making type II observations at hectometric and kilometric wavelengths (as made, for example, by Slysh and Malitson, Feinberg and Stone) cannot be over-emphasized due to this technique's ability to make unambiguous solar terrestrial relationships. More direct and physically-meaningful observations, however, are still dependent uponin situ plasma and magnetic field measurements. Additional emphasis is presently being placed on numerical modeling of shock-induced disturbances in the solar wind as generated by both flares and stream-stream interactions. The former mechanism is emphasized in this review with several recommendations for further research: (a) further numerical modeling for shocks, starting when they are born within relatively low-Alfvén speed coronal regions; (b) expanded synoptic studies by spacecraft at various heliocentric longitudes, radii, and (eventually) latitudes with coordinated diagnostics; and (c) extended patrol of natural probes, such as comets, augmented with theoretical studies of possible shock-induced mechanical and chemical effects.  相似文献   

2.
The theory of shock acceleration of energetic particles is briefly discussed and reviewed with an emphasis on clarifying the apparent distinction between the V × B and Fermi mechanisms. Attention is restricted to those situations in which the energetic particles do not themselves influence the given shock structure. In particular, application of the theory to the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Here particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIRs. The model is able to account for the observed exponential spectra at Earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.Calculations and resulting energy spectra are also presented for shock acceleration of energetic particles in large solar flare events. Based on the simplifying assumption that the shock evolves as a spherically symmetric Sedov blast wave, the calculation yields the time-integrated spectrum of particles initially injected at the shock which eventually escape ahead of the shock into interplanetary space. The spectra are similar to those observed at Earth. Finally further applications are suggested.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

3.
The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existence of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominate and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium. The interaction regions control the access to the inner solar system of relativistic electrons from Jupiter's magnetosphere. The interaction regions and shocks appear to be associated with an acceleration of solar protons to MeV energies. Flare-generated shocks are observed to be propagating through the outer solar system with constant speed, implying that the previously recognized deceleration of flare shocks takes place principally near the Sun. Radial gradients in the solar wind and interplanetary field parameters have been determined. The solar wind speed is nearly constant between 1 and 5 AU with only a slight deceleration of 30 km s+1 on the average. The proton flux follows an r +2 dependence reasonably well, however, the proton density shows a larger departure from this dependence. The proton temperature decreases steadily from 1 to 5 AU and the solar wind protons are slightly hotter than anticipated for an adiabatic expansion. The radial component of the interplanetary field falls off like r +2 and, on the average, the magnitude and spiral angle also agree reasonably well with theory. However, there is evidence, principally within quiet regions, of a significant departure of the azimuthal field component and the field magnitude from simple theoretical models. Pioneer 11 has obtained information up to heliographic latitudes of 16°. Observations of the interplanetary sector structure show that the polarity of the field becomes gradually more positive, corresponding to outward-directed fields at the Sun, and at the highest latitudes the sector structure disappears. These results confirm a prior suspicion that magnetic sectors are associated with an interplanetary current sheet surrounding the Sun which is inclined slightly to the solar equator.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

4.
We present the observation of three flare generated shock waves which were measured by Helios-2 at a radial distance from the Sun of 0.476 AU, 0.444 AU, and 0.297 AU. These results show that two of the shocks fulfill the classification scheme of F-events stated in the past while the third shock profile is that of a R-event being interpreted as a driven wave. Because of the close distance to the Sun a flare-association was possible. Only in one case there is some evidence for a piston in the downstream region of the shock. One of the shocks is characterized by a distinct hole in the frequency distribution of directional discontinuities in the downstream region.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

5.
The spectra and anisotropies of ions 30 keV have been measured by the Low Energy Charged Particle experiment on Voyagers 1 and 2 in the vicinity of interplanetary shocks between radial distances of 1–55 AU and heliographic latitudes 11° S-32° N. The spectra and anisotropies associated with a recent corotating (CIR) event at low latitude observed at Voyager 2 (36.6 AU, –9°) are similar to those of another event at high latitude observed at Voyager 1 (49.8 AU, 33.5°). An earlier CIR event observed at Voyager 2 (14 AU) associated with the previous solar cycle produced spectra and anisotropies remarkably similar to the more recent events. The anisotropies are used to calculate the solar wind velocity downstream of shocks where possible using the Compton-Getting effect, allowing the determination of previously unknown velocities at the locations of Voyager 1. For the large shock event observed at Voyagers 1 (38 AU, 30°) and 2 (29 AU, 3°) in mid-1989, the postshock spectra and anisotropies are well described by convected power law distributions. The Voyager 1 and 2 postshock spectra 4 days after the shock passage are nearly identical. The preshock anisotropies at low energy are similar, despite differences in the magnetic field orientation and the low energy spectrum. We find that the 30 keV ion anisotropies are generally well described by convective distributions downstream but not in the upstream region for shocks and many other shock events at Voyagers 1 and 2.  相似文献   

6.
Coronal transient phenomena   总被引:1,自引:0,他引:1  
Solar coronal transients, particularly those caused by flares and eruptive prominences, play a major role in the fields of solar-terrestrial physics and astrophysics. In the former field, coronal transients and their associated interplanetary disturbances are responsible for solar and galactic cosmic ray modulations, as well as planetary magnetospheric and ionospheric disturbances. In the latter field, supernovae remnants are scaled-up manifestations of such disturbances; that is they are stellar, rather than solar, coronal transients. Study of the more accessible solar transients is proving invaluable in both fields and is, therefore, selected for attention in this paper.A series of coronal transient observations is discussed in the spirit of a representative overview following some introductory remarks on the background solar wind. One of these observations is chosen because its interplanetary signature-the shock wave-was detected by two spacecraft at different heliocentric radii. Other cases are chosen because of the extended observations of embedded eruptive prominences. Progress is also being made in the interdisciplinary areas of optical imagery complemented with radio astronomical techniques.Finally, several recent theoretical models and MHD computer simulation studies are summarized. It is suggested that further comparison of specific events with such models promises a rich harvest of physical understanding of the origin, structure and interplanetary progeny of coronal transients.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

7.
A kinematic method of representing the three-dimensional solar wind flow is devised by taking into account qualitatively the stream-stream interaction which leads to the formation of a shock pair. Solar wind particles move radially away from the Sun, satisfying the frozen-magnetic field condition. The uniqueness of the present approach is that one can incorporate both theoretical and observational results by adjusting the parameters involved and that a self-consistent data set can be simulated. One can then infer the three-dimensional structure of the solar wind which is vital in understanding the interaction between the solar wind and the magnetosphere, and it is for this reason that the present kinematic method is devised. In the first part of this paper, the present kinematic method is described in detail by demonstrating that the following solar wind features can be simulated: (i) Variations of the solar wind quantities (such as the solar wind speed, the density and the IMF vector), associated with the solar rotation, at the Earth; (ii) the solar wind flow pattern in the meridian planes; (iii) the three-dimensional structure of the corotating interaction region (CIR); and (iv) the three-dimensional structure of the warped solar current sheet.In Section 2, the three-dimensional structure of solar wind disturbances are studied by introducing a flare-generated high speed stream into the two-stream model of the solar wind developed in Section 1. The treatment of the stream-stream interaction is generalized to deal with a flare-generated high speed stream, yielding a shock pair. The shock pair causes three-dimensional distortion of the solar current sheet as it propagates outward from the Sun. It is shown that a set of characteristic time variations of the solar wind speed, density, the interplanetary magnetic field magnitude B and angles (theta) and gf (phi) result at the time of the passage at the location of the Earth for a given set of flare conditions. These quantities allow us to compute the solar wind-magnetosphere energy coupling function . Time variations of the two geomagnetic indices AE and Dst are then estimated from . The simulated geomagnetic storms are compared with observed ones.In the third part, it is shown that recurrent geomagnetic storms can reasonably be reproduced, if fluctuating components of the interplanetary magnetic field (IMF) are superposed on the kinematic model of the solar wind developed in the first part. As an example, we simulate the fluctuating components by linearly polarized Alfvén waves and by random variations of the IMF angle (theta). Characteristics of the simulated and observed geomagnetic storms are discussed in terms of the simulated and observed AE and Dst indices. If the fluctuating components of the IMF can generally be identified as hydromagnetic waves, they may be an important cause for individual magnetospheric substorms, while the IMF magnitude B and the solar wind speed V modulate partially the intensity of magnetospheric substorms and storms.  相似文献   

8.
The mechanism by which ions are accelerated near the Earth's bow shock and near shocks propagating outward from the Sun in response to solar activity appears to be essentially the same. For both types of shock the solar wind thermal distribution acts as a seed population. Leaked magnetospheric ions and resident flare ions are additional seed populations for the bow shock and outward propagating shocks respectively. The acceleration of solar wind ions at these shocks begins with either the reflection of ions off the shock or leakage of shocked plasma back through the shock. Interaction with a disruption wave field self-generated by these backstreaming ions is responsible for the remainder of the acceleration at the bow shock. Both the disruption wave field and the ambient interplanetary wave field play important roles in accelerating ions at outward propagating shocks, but on different time scales. The geometry of the shock and the duration of field line connection to the shock play decisive roles in determining what is observed.  相似文献   

9.
The local interstellar medium can be probed in different ways: by analyzing low energy X-ray data in the range 0.1–0.4 keV, where the radiation is absorbed by the interstellar gas at column densities in excess of about 1020 cm-2 — and can therefore be regarded as local, by determining the absorption of stellar emission spectra from nearby stars along their lines of sight by intervening gas and by directin situ measurements of those components which penetrate the heliosphere sufficiently far, provided they can be distinguished from interplanetary material. The current status of these different investigations gives the following picture: the solar system is surrounded by a bubble of hot gas (density 0.005cm-3, temperature 106 K) out to several tens of parsecs. More locally it is embedded in a small warm cloud of density 0.07cm-3, temperature 7000 K, column density 5 × 1017 cm-2 — which gives a mass of about 0.1M . The transition to the heliosphere is governed by solar UV ionization, snowploughing of the interstellar gas by the outwardly expanding solar wind and the bow shock. The heliosphere is the region inside the solar wind terminal shock. Classically it would be regarded as not yet affected by (or aware of) the obstacle ahead. Practically, the existence of the interstellar medium makes itself felt even far inside the heliosphere by the penetration of neutral gas, dust, plasma waves, shock accelerated particles and cosmic rays. These are the local probes of the interstellar medium.  相似文献   

10.
As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of inter-events, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (>10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt<0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams.  相似文献   

11.
More than 1000 coronal mass ejections (CMEs) caused by different types of coronal transients have been analyzed up to now, based on the images from white light coronagraphs on board the OSO 7, Skylab, P78-1, and SMM spacecraft. In many cases, the CME images lead us to the impression of loop-like, more planar structures, similar to those of prominence structures often seen in H pictures. There is increasing evidence, though, for a three-dimensional bubble- or cloud-like structure of CMEs. In several cases, CMEs directed toward the earth (or away from it) were identified, as their outer fronts emerged on all sides of the coronagraph's occulting disk, thus suggesting a bubble-like appearance.There now appears to be unanimity about the crucial role that magnetic reconnection plays during the transient process. Recently, direct evidence was found for the pinch-off of CMEs, both from optical observations and from in situ measurements of isolated magnetic clouds' following transient shock waves. However, the detailed sequence of events during the generation of a CME is still unclear.Interplanetary shock waves associated with the CMEs are usually restricted in latitudinal extent to about the angular width of the optically observed CMEs. They may be somewhat less restricted in longitudinal extent. A nearly 1 1 association between CMEs and shock waves measured in situ from spacecraft (Helios 1 and 2, IMP 7 and 8, ISEE 3, Pioneer Venus) can be established, provided the CME and the spacecraft were in the same longitudinal and latitudinal range and the CME speed exceeds 400 km s–1. Around the past solar activity minimum all CMEs observed were centered at solar latitudes of less than 60°. Around solar maximum, a significant fraction of CMEs also originated from the polar regions. Thus, there is a good chance that the Ulysses spaceprobe will encounter many shocks caused by both low- and high-latitude CMEs, when it finally starts its journey over the Sun's poles.  相似文献   

12.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

13.
Models of the transition region — corona — solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the the solar wind proton flux. The thermal force on -particles in the transition region sets the flow of helium into the corona. The frictional coupling between -particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content.  相似文献   

14.
The observations of interplanetary scintillation of radio sources in early August 1972 are reviewed. Three-site measurements of solar wind speed were made at University of California, San Diego (73.8 MHz) and at Nagoya University, Toyokawa (69.3 MHz). Single-site measurements of scintillation index were made at Mullard Radio Astronomy Observatory, Cambridge (81.5 MHz) and at University of Adelaide (111.5 MHz). The enhancements in solar wind speed and scintillation index associated with three shock waves were detected. The extent in both longitude and latitude of the shock wave associated with the solar flare on 7 August, the anisotropic expansion of shock waves and the detection of the corotating high-speed streams are main results deduced from the observations.  相似文献   

15.
Studies evaluating the transport coefficients for energetic particles in interplanetary space are described in relation to particle data.In position space, the main mode of propagation is along field lines but perpendicular diffusion and drift motion is also possible. Diffusion coefficients based on interplanetary magnetic field data are either derived from quasi-linear, adiabatic theory or this theory corrected for finite scattering near 90° pitch angle or by numerical techniques. Relevant particle data includes solar proton event time profile and anisotropy measurements. In general, when Fokker-Planck transport equation solutions are fitted to particle data, the parallel diffusion coefficients obtained still appear rather larger than those given by theoretical estimates. Perpendicular diffusion is shown to be due to field line wandering and random drift motion effects. The importance of drift motion in cosmic ray modulation theory is mentioned.Although much emphasis is currently placed upon shock acceleration in CIR's, statistical acceleration in interplanetary space must be considered. Energetic particles may gain energy from longitudinal waves and cyclotron resonance interactions. Analytical and numerical estimates of the energy space diffusion coefficients are considered. Some reveal a surprising importance to this statistical acceleration and can explain a variety of data.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   

16.
The question of how low-frequency radio emissions in the outer heliosphere might be generated is considered. It is argued that the free energy contained in an electron beam distribution is first transformed into electrostatic Langmuir waves. The nonlinear interactions of these waves which can produce electromagnetic waves are then treated in the semi-classical formalism. Comparison of the results of the discussed model with electromagnetic radiation coming from upstream of the Earth's bow shock shows that the model adequately explains the generation of plasma waves at planetary shocks. By analogy, this model can provide a quantitative explanation of intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The field strength of Langmuir waves required to generate the second harmonic emissions are approximately of 100–200 V m–1 for the primary and 50–100 V m–1 for the secondary foreshocks. However, only in the secondary foreshock the expected density is consistent with the observed frequency.  相似文献   

17.
ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The interplanetary shock illustrates the behavior of a low Mach number shock. It had an upstream whistler wave precursor with an apparent wavelength of 180 km. The shock thickness was about 90 km for the thickness of the final field jump or 270 km for the exponential growth of the precursor wave packet. The ion inertial length was 50 km, upstream of the shock.Three examples of low or moderate , high Mach number, quasiperpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. The growth length for these waves and the shock profile was of the order of the ion inertial length.Two examples of high shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. Thus, we cannot gauge their velocity and turn the time profiles into distances. The final crossing examined shows clearly the effect of changing the orientation of the interplanetary magnetic field. Initially the upstream magnetic field made an angle of about 80° to the shock normal and the shock position remained fairly steady. Then the field rotated to 45° to the normal and the field profiles became very irregular and the shock position very unstable. Discrete wave packets appeared.Finally, we present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior we are now beginning to investigate.  相似文献   

18.
Acceleration of the solar wind   总被引:2,自引:0,他引:2  
In this review, we discuss critically recent research on the acceleration of the solar wind, giving emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why thermally driven wind models constrained by solar and interplanetary observations encounter substantial difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider the question of what role MHD waves might play in transporting energy through the solar atmosphere and depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of solar wind acceleration by Alfvén waves and the related problem of accelerating massive stellar winds with Alfvén waves.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.On leave from the Auroral Observatory, Institute of Mathematical and Physical Sciences, University of Tromsø, N-9001 Tromsø, Norway.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

20.
Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping.The basic data used in this review have been collected by many workers throughout the world utilizing a variety of instruments such as fixed frequency radiometers, multi-element interferometers, dynamic spectrum analysers and polarimeters. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplanetary space. It appears to us that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. Observational limitations of the current ground-based experimental techniques have been pointed out and a suggestion has been made to evolve appropriate observational facilities for solar work before the next Solar Maximum Year (SMY).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号