首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The use of oxygen produced on the Moon—called “MOONLOX”—is considered as a propellant component for a reusable Earth-Moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed and the processing concept of a lunar oxygen plant based on fluorination is presented. It is shown that the necessary mass of supply from Earth for MOONLOX-production is an important parameter, which may not be neglected due to its strong influence on the economy. In the ideal case where no supplies from Earth are required a reduction of up to 50% in masses to be launched into low Earth orbit can be obtained for a typical lunar mission with use of MOONLOX compared to a reference scenario with Earth-derived propellant. Mass-saving decreases, however, significantly with increasing supply from Earth until a critical supply-rate is reached—measured in percentage of MOONLOX-mass produced and consumed—beyond which mass-saving and thus economically promising lunar oxygen production is no longer possible. This critical supply-rate depends on the scenario for MOONLOX-utilization and is much larger in the case of in situ use of MOONLOX on the lunar surface, e.g. as ascent propellant for the lunar bus, than in the case of export for complete refuelling of both space vehicles. The latter scenario therefore requires significantly more autonomy for MOONLOX-production. The reduction of masses to be transported into low Earth orbit and corresponding MOONLOX-consumption define for given specific Earth-to-LEO transportation costs an upper limit on MOONLOX-production costs beyond which economic benefit is not possible. Depending on the MOONLOX-utilization strategy this upper limit varies between 3000 and 55000 $/kg for current Earth-to-LEO transportation costs.  相似文献   

2.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

3.
The USA has adopted the long-term goal of exploring the space frontier, including establishing human settlements beyond Earth orbit. This article describes four candidate missions for developing pathways into the Solar System which have been identified by NASA's Office of Exploration: human expeditions to Phobos and Mars, a lunar observatory and a lunar outpost to assist Mars explorations. The requirements placed upon near-term programmes by each of these missions are outlined and the elements necessary for a long-term implementation strategy are analysed.  相似文献   

4.
The aim of this review, whose title might as well be “Toward a dedicated lunar farside radio observatory”, is to provide information for potential interested workers whom we invite to contribute to this multidisciplinary effort.First point: in view of the dramatic increase of radio interference due to the development of satellite-based human telecommunications, it will soon become impossible to conduct valuable high-sensitivity SETI observations from the terrestrial ground. It is why a few years ago I started an interdisciplinary and international endeavor to protect for the next 20/30 years a well specified lunar farside crater (Saha) which no Earth- or geostationary orbit-based radio emission could reach.After raising technical, programmatic, legal, astronautical, industrial, political, ethical issues at a number of conferences of international learned institutions, this enterprise is now of interest for the wider field of next generation high-sensitivity radioastronomy at large, from decametric to sub-millimetric waves.This last year, positive results were the creation of an IAA Sub-committee for “A Lunar SETI Study”, the presentation of a Resolution to the IAU for the protection of a potential lunar radio observatory site, discussions at the IAA/IISL Scientific-Legal Roundtable on SETI & Society at IAF Congress in Torino, the organization of a half-day Scientific Event at next COSPAR Assembly in Nagoya and the initiation of an IAA Cosmic Study on the subject.We shall conclude by outlining the next efforts to be initiated up to a real Moon radio observatory.  相似文献   

5.
When the requisite technology exists, the US political process will inevitably include lunar surface activities as a major space objective. This article examines a manned lunar base in terms of three distinct functions: the scientific investigation of the Moon and its environment; development of the capability to use lunar resources for beneficial purposes throughout the Earth-Moon systems; and conduct of R&D leading to a self-sufficient and self-supporting manned lunar base. Three scenarios are outlined with respect to each possible function.  相似文献   

6.
The speedily expanding Internet is in the process of transforming the technological, economic, and policy bases for nation-state regulation of telecommunications, including space-based satellite networks. Deployment of the packet-switched Internet has accelerated the liberalization of telecommunications markets and has led to far-reaching regulatory restructuring and policy shifts regarding state ownership and control of networks and information flows. As space-based GMPCS networks become integral parts of the globalizing Internet infrastructure, the state-centric legal paradigm requiring state “authorization and continuing supervision” of space activities by “non-governmental entities” stipulated under Article VI of the OST and associated treaties forming the outer space legal regime will be called increasingly into question. This paper examines the technological, economic/trade, and security issues that question whether the existing state-centric paradigm for regulating Internel-based GMPCS satellite systems will remain in legal phase with emerging liberalized regulatory regimes for terrestrial Internet-based infractructures.  相似文献   

7.
The Moon is a major target in expanding human activity in Space. President Bush has called for a Space Exploration Initiative. European participation may depend on achieving an affordable programme and identifying distinct elements for non-U.S. participation. Affordability requires that all participants can influence the “cost to user” of Base operations. If lunar activity is to evolve towards resource exploitation, there will need to be a progressive reduction in operating costs. European interest would prefer participation that allowed longer-term independent interests. The paper addresses how non-U.S. agencies could contribute valuable elements to an International Moon Base while meeting three criteria:

• — Keep a core infrastructure under U.S. control.

• — Avoid a total reliance by the partner on U.S. services.

• — Allow the partner to evolve towards an eventual, semi-autonomous or autonomous capability.

The paper illustrates possible implications of meeting these constraints through “mini infrastructures” combining several elements to form a working architecture. It is concluded that any European participation in an International Moon Base Programme should contain both Space transport and surface elements.  相似文献   


8.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

9.
At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants--rice, soybean, lettuce and strawberry--were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the above mentioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.  相似文献   

10.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

11.
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the “Closed Equilibrated Biological Aquatic System” (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to “near weightlessness conditions” (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i . e. that the plants exhibited biomass production rates identical to the ground controls and that as well the reproductive, and the immune system as the the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle fligt (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiments and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the short-term space experiments with the C.E.B.A.S. MIMI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated “reproduction module” for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

12.
The literature on the history of spaceflight has depicted the early 1950s Colliers articles mostly as a forerunner to the peaceful and scientific exploration of space. Yet the centerpiece of Wernher von Braun's plan was a manned space station that would serve as reconnaissance platform and orbiting battle station for achieving “space superiority” over the USSR. One its roles could be the launching of nuclear missiles. When challenged as to the station's defensibility, von Braun even posited pre-emptive atomic strikes from space as a response to the development of a hostile anti-satellite capability.  相似文献   

13.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

14.
Because the need for energy is global, and many energy networks are already interdependent, because no one country has sufficient technological capability or sufficient funds to provide a space solar powered solution on its own, and because any such solution will require international regulation, international coordination will be vital to any attempt to produce energy for Earth from space. This will be made easier by the fact that work on the subject has already been widely publicized and distributed and cooperative efforts have already been made. Various coordinating approaches are described and the need to forge partnerships between government, industry and academia — with greater involvement of all non-space groups concerned with energy — is emphasized. A “terracing approach” to the actual implementation of SPS is suggested and outlined.  相似文献   

15.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.  相似文献   

16.
针对月球探测中软着陆与采样返回段弹道计算问题,提出用数值逼近弹道确定方法。通过B样条对探测器状态进行建模,进而综合全弧段数据进行统计定轨的方法。由于样条法良好的数值逼近性能,使得该方法对探测器弹道异常复杂情况下的状态确定较为有效。对嫦娥三号探测器动力软着陆弧段进行了仿真与实测数据处理。分析了采样返回段的基本动力学与控制特征,为后续的嫦娥五号探测器的软着陆及其采样返回提供初步的可行弹道计算方法。在嫦娥三号探测器动力落月段实测数据处理中,通过评估,该段弹道确定精度优于100 m,其弹道末点与NASA的月球勘测轨道器(LRO)给出的结果差异优于50 m,证实了文章提出的软着陆弹道确定方法的有效性。  相似文献   

17.
There is as yet no widely accepted theory of spacepower, although links to the development of seapower theory are generally acknowledged. An ongoing NDU study is building a framework to explicate the fundamental aspects of spacepower and its relation to the pursuit of a variety of objectives. Two distinct “ages” of the current space era can be discerned, the first based on Cold War competition and the need for prestige, the second based on the requirement for information in a globalized world. The most important features of future space activity are likely to be economic development, and national and international security. Developing a spacepower theory will provide an opportunity to maximize the benefits of space for global society.  相似文献   

18.
Without doubt, humans’ most urgent need at the start of the new millennium is the continuation of economic growth, which is the only means by which the great majority of the world population can lift themselves out of the poverty in which they live. A sine qua non for continuing economic growth is for the rich countries to continue to develop new industries—as they did throughout the 20th century, thereby creating high-productivity employment for hundreds of millions of people around the world. Arguably the most significant of these thus far is the development of passenger air travel from zero in 1900 to 1.5 billion passengers per year by 2000. It is becoming clear that passenger space travel could grow to reach a similar economic scale—and that no other space activity has comparable potential. The paper describes the potential contribution to world economic growth of passenger space travel; the failure of government space agencies either to aid its development or to make a contribution to economic growth commensurate to their cost; and the value for economic policy of prioritising the realisation of passenger space travel. The faster passenger space travel services grow, the more the space industry will contribute to “Meeting the Needs of the New Millennium”.  相似文献   

19.
This article reports about the results of the latest computer runs of a lunar base simulation model. The lunar base consists of 20 facilities for lunar mining, processing and fabrication. The infrastructure includes solar and nuclear power plants, a central workshop, habitat and farm. Lunar products can be used for construction of solar power systems (SPS) or other spacecraft at several space locations. The simulation model evaluates the mass, energy and manpower flows between the elements of the system as well as system cost and cost of products on an annual basis for a given operational period. The 1983 standard model run over a fifty-years life cycle (beginning about the year 2000) was accomplished for a mean annual production volume of 78 180 Mg of hardware products for export resulting in average specific manufacturing cost of 8.4 $/kg and total annual cost of 1.25 billion dollars during the life cycle. The reference space transportation system uses LOX/LH2 propulsion for which at the average 210 500 Mg LOX per year is produced on the moon. The sensitivity analysis indicates the importance of bootstrapping as well as the influence of market size, space transportation cost and specific resources demand on the mean lunar manufacturing cost. The option using lunar resources turns out to be quite attractive from the economical viewpoint. Systems analysis by this lunar base model and further trade-offs will be a useful tool to confirm this.  相似文献   

20.
刘通  陈浩  郭鹏斌 《宇航学报》2023,44(2):282-293
针对使用星地双向单程测量技术实现给定场景下的地月空间高精度测量问题,建立了地月空间纳秒级星地时差解算模型与米级瞬时距离解算模型,定量分析了模型中各因素的量级,并对模型中收发时延、引力时延、定轨误差和大气延迟等多种因素引入的时差和距离估算误差进行了定量分析。仿真数据的处理结果校验了误差量级理论分析的准确性,时差估算的均方根误差优于7.6ns,瞬时距离估算均方根误差优于2.4 m。建立的模型可以对地月空间星地DOWR测量数据进行高精度处理,实现地月空间高精度时间比对,支持未来中国载人登月等任务及地月空间高精度导航技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号