共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
David L 《Aerospace America》1996,34(5):26-30
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet. 相似文献
3.
4.
Frederick L. Scarf 《Space Science Reviews》1985,42(1-2):241-255
The first measurements of plasma waves and wave-particle interactions in the magnetospheres of the outer planets were provided
by instruments on Voyager 1 and 2. At Jupiter, the observations yielded new information on upstream electrons and ions, bow
shock dissipation processes, trapped radio waves in the magnetospheres and extended Jovian magnetotail, pitch angle diffusion
mechanisms and whistlers from atmospheric lightning. Many of these same emissions were detected at Saturn. In addition, the
Voyager plasma wave instruments detected dust particles associated with the tenuous outer rings of Saturn as they impacted
the spacecraft. Most of the plasma wave activity at Jupiter and Saturn is in the audio range, and recordings of the wave observations
have been useful for analysis. 相似文献
5.
6.
7.
8.
Radar Imaging of Mercury 总被引:1,自引:0,他引:1
John K. Harmon 《Space Science Reviews》2007,132(2-4):307-349
Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during
the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization
imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements
in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright
features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater
floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however,
regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation
by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most
of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright
ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80–125 km. Among
these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage
of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper
and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure.
These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized
brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting
finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands
on the Moon. 相似文献
9.
André Balogh Réjean Grard Sean C. Solomon Rita Schulz Yves Langevin Yasumasa Kasaba Masaki Fujimoto 《Space Science Reviews》2007,132(2-4):611-645
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive
understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational
well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner
10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late
1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury
in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in
detail. 相似文献
10.
11.
12.
The Magnetic Field of Mercury 总被引:1,自引:0,他引:1
Brian J. Anderson Mario H. Acuña Haje Korth James A. Slavin Hideharu Uno Catherine L. Johnson Michael E. Purucker Sean C. Solomon Jim M. Raines Thomas H. Zurbuchen George Gloeckler Ralph L. McNutt Jr. 《Space Science Reviews》2010,152(1-4):307-339
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation. 相似文献
13.
A. Milillo P. Wurz S. Orsini D. Delcourt E. Kallio R. M. KILLEN H. Lammer S. Massetti A. Mura S. Barabash G. Cremonese I. A. Daglis E. De Angelis A. M. Di Lellis S. Livi V. Mangano K. Torkar 《Space Science Reviews》2005,117(3-4):397-443
Mercury is a poorly known planet, since the only space-based information comes from the three fly-bys performed in 1974 by
the Mariner 10 spacecraft. Ground-based observations also provided some interesting results, but they are particularly difficult
to obtain due to the planet’s proximity to the Sun. Nevertheless, the fact that the planet’s orbit is so close to the Sun
makes Mercury a particularly interesting subject for extreme environmental conditions. Among a number of crucial scientific
topics to be addressed, Mercury’s exosphere, its interaction with the solar wind and its origin from the surface of the planet,
can provide important clues about planetary evolution. In fact, the Hermean exosphere is continuously eroded and refilled
by these interactions, so that it would be more proper to consider the Hermean environment as a single, unified system – surface-exosphere-magnetosphere.
These three parts are indeed strongly linked to each other. In recent years, the two missions scheduled to explore the iron
planet, the NASA MESSENGER mission (launched in March 2004) and the ESA cornerstone mission (jointly with JAXA) BepiColombo
(to be launched in 2012), have stimulated new interest in the many unresolved mysteries related to it. New ground-based observations,
made possible by new technologies, have been obtained, and new simulation studies have been performed. In this paper some
old as well as the very latest observations and studies related to the surface-exosphere-magnetosphere system are reviewed,
outlining the investigations achievable by the planned space-based observations. This review intends to support the studies,
in preparation of future data, and the definition of specific instrumentation. 相似文献
14.
William V. Boynton Ann L. Sprague Sean C. Solomon Richard D. Starr Larry G. Evans William C. Feldman Jacob I. Trombka Edgar A. Rhodes 《Space Science Reviews》2007,131(1-4):85-104
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited
to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer
(GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al,
Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction:
aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements,
with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust
and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount
of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to
water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount
of Fe present in other forms, including metal and sulfides. 相似文献
15.
Rosemary Killen Gabrielle Cremonese Helmut Lammer Stefano Orsini Andrew E. Potter Ann L. Sprague Peter Wurz Maxim L. Khodachenko Herbert I. M. Lichtenegger Anna Milillo Alessandro Mura 《Space Science Reviews》2007,132(2-4):433-509
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials.
If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric
study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been
believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et
al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization,
photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal
and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed.
As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude.
Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are
never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is
brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not
only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering.
They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms
through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects
regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material
and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering
effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes
as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but
also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy,
T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative
rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact
of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter. 相似文献
16.
The Mercury Dual Imaging System on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
S. Edward Hawkins III John D. Boldt Edward H. Darlington Raymond Espiritu Robert E. Gold Bruce Gotwols Matthew P. Grey Christopher D. Hash John R. Hayes Steven E. Jaskulek Charles J. Kardian Jr. Mary R. Keller Erick R. Malaret Scott L. Murchie Patricia K. Murphy Keith Peacock Louise M. Prockter R. Alan Reiter Mark S. Robinson Edward D. Schaefer Richard G. Shelton Raymond E. Sterner II Howard W. Taylor Thomas R. Watters Bruce D. Williams 《Space Science Reviews》2007,131(1-4):247-338
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin
and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC
is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color
filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled
device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and
the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward
from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel
binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at
Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission
angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor
images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct
a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips.
Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement
history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper
summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing
units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated
from MDIS data. 相似文献
17.
Leonid Ksanfomality John Harmon Elena Petrova Nicolas Thomas Igor Veselovsky Johan Warell 《Space Science Reviews》2007,132(2-4):351-397
New planned orbiter missions to Mercury have prompted renewed efforts to investigate the surface of Mercury via ground-based
remote sensing. While the highest resolution instrumentation optical telescopes (e.g., HST) cannot be used at angular distances
close to the Sun, advanced ground-based astronomical techniques and modern analytical and software can be used to obtain the
resolved images of the poorly known or unknown part of Mercury. Our observations of the planet presented here were carried
out in many observatories at morning and evening elongation of the planet. Stacking the acquired images of the hemisphere
of Mercury, which was not observed by the Mariner 10 mission (1974–1975), is presented. Huge features found there change radically
the existing hypothesis that the “continental” character of a surface may be attributed to the whole planet. We present the
observational method, the data analysis approach, the resulting images and obtained properties of the Mercury’s surface. 相似文献
18.
Robert G. Strom 《Space Science Reviews》1979,24(1):3-70
Our knowledge of Mercury has improved dramatically since the flight of Mariner 10. The planet is probably differentiated into a large iron-rich core (75% of the total radius) and a relatively thin (600 km) silicate mantle. Although the surface of Mercury superficially resembles the Moon, there are three main differences: (1) large areas of relatively old intercrater plains, (2) a widespread (probably global) distribution of lobate scarps, and (3) a similar albedo between young smooth plains and the older mercurian highlands. The origin of Mercury's plains units is still uncertain but a volcanic origin is favored for at least large tracts of the younger smooth plains. The older intercrater plains seem to span a range of ages, large tracts of which appear to have been implaced during the period of intense bombardment. The widespread distribution of lobate scarps probably resulted from a period of global contraction relatively late in Mercury's history. This period of contraction probably resulted primarily from cooling of the lithosphere and/or core following core formation. The crater diameter density distribution on the Moon, Mars and Mercury indicates that all the terrestrial planets experienced a period of intense bombardment early in their histories and that the objects responsible for this bombardment probably belonged to the same population(s). 相似文献
19.
The Geology of Mercury: The View Prior to the MESSENGER Mission 总被引:1,自引:0,他引:1
James W. Head Clark R. Chapman Deborah L. Domingue S. Edward Hawkins III William E. McClintock Scott L. Murchie Louise M. Prockter Mark S. Robinson Robert G. Strom Thomas R. Watters 《Space Science Reviews》2007,131(1-4):41-84
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an
exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface,
a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of
the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with
major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current
image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik
in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor
(∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening
due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because
of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury
is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping
of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and
crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that
provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat
loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the
global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history
and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to
disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry;
(6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations
in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those
on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be
further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships
of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century
since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route
to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth
of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury
using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data. 相似文献
20.
L. Zelenyi M. Oka H. Malova M. Fujimoto D. Delcourt W. Baumjohann 《Space Science Reviews》2007,132(2-4):593-609
This paper is devoted to the problem of particle acceleration in the closest to the Sun Hermean magnetosphere. We discuss
few available observations of energetic particles in Mercury environment made by Mariner-10 in 1974–1975 during Mercury flyby’s
and by Helios in 1979 upstream of the Hermean bow shock. Typically ions are non-adiabatic in a very dynamic and compact Mercury
magnetosphere, so one may expect that particle acceleration will be very effective. However, it works perfectly for electrons,
but for ions the scale of magnetosphere is so small that it allows their acceleration only up to 100 keV. We present comparative
analysis of the efficiency of various acceleration mechanisms (inductive acceleration, acceleration by the centrifugal impulse
force, stochastic acceleration in a turbulent magnetic fields, wave–particle interactions and bow shock energization) in the
magnetospheres of the Earth and Mercury. Finally we discuss several points which need to be addressed in a future Hermean
missions. 相似文献