首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
传统合成孔径雷达(Synthetic aperture radar,SAR)成像依赖大带宽发射信号,研究证明SAR也可利用窄带连续波形(Narrowband continuous wave,NCW)具有的高多普勒分辨率实现场景的高分辨成像。NCW-SAR成像的优势在于占有很少的频带资源、降低系统成本和规模,更适用于通常带宽较窄的利用外辐射源波形的无源SAR。文中首先指出NCW-SAR的应用前景,简要回顾窄带动目标成像的发展,并分析NCW-SAR成像技术的现状。然后给出通用的SAR回波模型,提出NCW-SAR动目标成像方法,实现静止场景中动目标的聚焦,获得目标的速度估计,并分析速度分辨率。实验验证了NCW-SAR动目标成像方法的有效性。  相似文献   

2.
构造了各聚焦图像块的对比图像块,对比图像块内的静止背景与聚焦图像块内的静止背景图像保持同步变化,它们的锐度始终相等,而对比图像块内的动目标与聚焦图像块内的动目标图像有很大差异,以聚焦图像块与对比图像块锐度比检测动目标,可排除静止背景锐度下降的影响,提高检测性能。实测数据表明该算法有效。  相似文献   

3.
压缩感知(Compressive sensing, CS)理论框架下逆合成孔径雷达(Inverse syntheitic operture radar, ISAR)成像的结果具有超分辨、无旁瓣干扰等特点,但CS ISAR成像方法性能仍然受到稀疏表示不准确和图像重建方法效率低等限制。基于深度神经网络(Deep neural network, DNN)的欠采样或不完整信号重建方法取得了瞩目的表现。DNN能够自主学习最优网络参数并挖掘出输入数据的抽象高层特征表示,但目前已有的DNN都为实数域的模型,无法直接用于复数形式数据处理。为了利用DNN的优势提高ISAR欠采样数据成像的质量,本文通过级联不同类型的复数网络层的方式,构建具有多级分解能力的复数深度神经网络(Complex value DND, CV-DNN),利用CV-DNN实现ISAR成像。实验结果表明,基于CV-DNN的ISAR成像方法在成像质量和计算效率方面都优于传统压缩感知成像方法。  相似文献   

4.
成像雷达是空间目标监视系统中的重要组成部分.为深入评估某微小卫星的隐身性能,对卫星的逆合成孔径雷达(ISAR)成像效果进行预测,从雷达成像角度评估卫星的隐身效果.首先简述用于空间目标成像的ISAR成像的基本原理.然后构造卫星的散射点模型,散射系数采用微波暗室的实际测量值.依据仿真雷达系统参数和卫星实际在轨运行参数,计算卫星ISAR成像所需成像时间.对卫星3种飞行姿态,即卫星顶部指向地球表面的隐身姿态、卫星顶部与飞行方向一致和卫星底部指向地球表面两种非隐身姿态,以及不同信噪比情况,进行ISAR仿真,详细分析每种情况下的运动补偿效果和最终ISAR成像效果,说明了卫星隐身设计的有效性.  相似文献   

5.
距离-多普勒算法是一种标准的正侧视合成孔径雷达成象处理算法.本文研究了两种改进的算法用来完成斜视模式下机载合成孔径雷达方位相关处理的距离-多普勒,文中给出了斜视模式机载合成孔径雷达的空间几何模型和回波信号模型和用距离-多普勒算法处理斜视模式机载合成孔径雷达信号的过程.仿真结果表明,这两种距 离-多普勒算法适合于斜视角小于20(°)的机载合成孔径雷达信号的处理.  相似文献   

6.
雷达目标检测系统系统主要由FPGA和DSP两部分组成。FPGA芯片用来完成系统中各芯片之间的逻辑控制,DSP芯片用来实现雷达目标检测算法。该系统具有设计灵活、实时性能高、检测算法可配置、检测结果无丢失等优点。  相似文献   

7.
距离—多普勒成像雷达的距离分辨力和横分辨力分别取决于发射信号的有效带宽和目标相对于雷达视线(RLOS)在相于处理区间内的转角。本文研究线性预测数据外推离散傅里叶变换(LPDEDFT)超分辨成像方法,旨在突破普通的FFT距离多普勒处理的限制,提高距离—多普勒成像雷达的分辨力。LPDEDFT在概念上和计算上都比较简单,分两步进行,先用线性预测方法把观测数据外推到观测窗之外,然后对外推过的数据进行普通的离散傅里叶变换。文中给出了B—52飞机缩比金属模型微波暗室转台实测数据和飞行中的Boeing-727飞机外场实测数据的成像结果。LPDEDFT与普通的傅里叶方法相比,在相同信号带宽和目标总转角的条件下可以得到更高的图像分辨力,或者可以用较小的信号带宽和目标总转角获得相同质量的图像。  相似文献   

8.
分别利用恒速动目标的信号幅度和信号相位估计动目标信号的频谱中心和多普勒调频率,结果不受动目标位置影响,解决了"方位位置不确定问题"。根据动目标方位向信号的频谱中心、调频率和动目标像位置,实现定位动目标。将聚焦良好的静止背景和动目标像以正确的相对位置绘制到同一幅图像中,是对动目标定位的最好表达方式。  相似文献   

9.
与常规逆合成孔径雷达(Inverse syntheticaperture radar,ISAR)相同,压缩ISAR也需要进行基于回波信号的运动补偿,其中包括距离对准和相位补偿。本文提出了一种适用于压缩ISAR成像处理的相位自聚焦算法。该算法采用特征向量法解决稀疏ISAR信号的相位补偿问题。试验结果证明了该算法的有效性。  相似文献   

10.
雷达的目标识别技术   总被引:1,自引:0,他引:1  
对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾。研究了相控阵雷达系统中多目标跟踪识别的重复检测问题。提出了角度相关区算法,分析了实现中的若干问题。通过在相控阵雷达地址系统中进汀的地址实验和结果分析表明,采用角度相关区算法对重复检测的回波数据进行处理时,将使识别的目标信息更精确,从而能更早地形成稳定的航迹,达到对目标的准确识别。  相似文献   

11.
机载SAR成像信号处理研究和实践   总被引:1,自引:0,他引:1  
成像信号处理是合成孔径雷达(SAR)的核心.必须根据SAR系统战技指标的要求,设计先进、合理和实用的成像信号处理方案和算法。某型机载SAR旁视成像模式综合运用二维可分离成像算法、预处理和运动补偿,前斜视成像模式综合运用线性距离多普勒成像算法、天线扫描和运动补偿,满足了全数字化、机上实时成像的要求。样机试飞中,在国内首次获得高清晰度3m分辨率的旁视SAR图像和首次实现高分辨率前斜视SAR成像。试飞数据在地面处理后,在国内首次获得方位分辨率优于0.5m的成像结果。  相似文献   

12.
扩展分形在SAR图像特定尺寸目标检测中的应用   总被引:1,自引:0,他引:1  
介绍了扩展分形(Extended fractal)技术在合成孔径雷达(SAR)图像特定尺寸目标检测中的应用。与传统的检测特征相比,扩展分形特征不仅可以依靠时比度从背景中识别目标,而且对目标物体的尺寸敏感。文中对扩展分形的定义以及扩展分形的均值和方差进行了分析,表明了扩展分形对目标尺寸和对比度的敏感特性。在扩展分形定义中,通过比较不同的能量增长间隔比值对扩展分形均值和方差的影响,确定了最优能量增长间隔比值,将扩展分形技术用于对实测SAR图像中特定尺寸目标检测,得到了良好的识别效果。实验表明,扩展分形技术对特定尺寸的目标具有很好的检测性能。  相似文献   

13.
真实数据SAR成像的实现   总被引:3,自引:0,他引:3  
作者用SIR-C/X-SAR的X波段SAR的原始数据,实现了真实数据SAR的成像。本文给出了成像实现的完整过程、具体步骤以及各步骤间的关系,包括成像算法选择、距离向线性调频脉冲压缩、多普勒中心估计、多普勒频率变化率估计、方位向压缩处理、降低相干斑的多视处理以及改善图像层次的后处理等,对各步骤等进行了扼要叙述,并以框图的形式明确表示了成像几何参数、雷达系统参数、多普勒参数等与各步骤间的关系。此外还给出了部分主要中间结果与参数,以及最后的成像结果。  相似文献   

14.
南京航空航天大学雷达探测与成像技术研究团队利用自主研制的无人机(Unmanned aerial vehick, UAV)机载高分辨率微小型合成孔径雷达(Mini synthetic aperture radar, MiniSAR)系统,针对多类具有代表性的地面目标进行全方位回波录取及成像处理,构建了拥有自主知识产权的复杂目标SAR数据集,并依托该数据集开展了基于人工智能的目标识别方法研究。针对无人机运动姿态不稳定、辅助传感器精度受限导致的图像散焦问题,本文提出了新型运动补偿及新型二维自聚焦算法。实验表明,虽然AlexNet、ResNet-18、AConvNet和VGG等经典神经网络在MSTAR十类目标分类问题中取得了接近100%的分类准确率,但将其应用于南航MiniSAR数据集时分类准确率均明显低于90%。由于本文采取的实验方法与SAR目标识别技术的实际应用场景较为接近,该MiniSAR数据集对于面向工程应用的SAR目标识别算法研究将会具有重要参考价值。  相似文献   

15.
传统的SAR图像识别技术主要基于目标的电磁散射特性,而目标阴影信息对SAR图像目标识别具有重要的作用。若能获取同一目标在多个方位角下的多幅SAR图像,可改善目标识别的性能。针对该问题,本文提出了一种基于隐马尔可夫模型及阴影信息的多视角SAR图像识别技术。该技术提取目标阴影形状的链编码作为特征向量,并结合同一目标在不同方位角下的多幅图像的特征向量,生成该目标的特征序列,然后利用HMM对特征序列进行识别。仿真结果表明,该方法可有效实现SAR图像目标识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号