首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
俄罗斯的空间军事能力:1992年~2001年   总被引:1,自引:1,他引:1  
在过去的10年间,俄罗斯的各种军用卫星的发射率大幅度降低,甚至出现了没有照相侦察卫星在轨的特殊时期。俄罗斯是否由于财政状况,无法维持其军事空间能力呢?还是另有其他原因呢?文章列举了在1992~2001年间,俄罗斯的军用卫星发射情况,分析了其空间计划的前景。  相似文献   

2.
How far the broad security, political and economic goals behind the USA's invitation to Russia to participate in the International Space Station have been achieved is assessed in this synthesis of the views of a range of experts in Russian affairs and US foreign and national security policy. The article covers the impacts of cooperation on the Russian aerospace industrial base, on nonproliferation issues and on overall US–Russian relations. Various themes are identified—such as Russian ambivalence over embracing Western norms—and while the experts agreed on certain subjects, there was no overall unanimity.  相似文献   

3.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

4.
The Russian/CIS space programme is planning launches from the world’s oceans. In July 1998 a small German satellite was launched from a Russian submarine, the first launch of its kind. A whole family of submarine-launched missiles is available for commercial launches of this kind. In addition, 1999 should see the first flight in the Sea Launch programme which brings together Russian, Ukrainian, US and Norwegian experience.  相似文献   

5.
朱仁璋 《航天器工程》2009,18(1):116-117
在中文文献中,同一苏/俄航天服俄文名称有多个中文译名,极易引起混淆与误解。为此,短文提出统一(或约定)苏/俄航天服中文译名的建议,可供使用者参考。  相似文献   

6.
《Acta Astronautica》2007,60(4-7):237-246
The main purpose of the medical support system aboard International Space Station (ISS) is crew health maintenance and high level of work capability assurance prior to during and after in space flights. In the present communication the Russian point of view dealing with the problems and achievements in this branch is presented. An overview on medical operations during flight and after finalization of the space missions based on Russian data of crew health and environment state monitoring, as well as data on the inflight countermeasures (prophylaxis) jointly with data on operational problems that are specific to ISS is presented. The report summarizes results of the medical examination of Russian members of the ISS and taxi crews during and after visits to the ISS.  相似文献   

7.
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in- and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.  相似文献   

8.
In 1994–1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   

9.
In 1994-1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   

10.
The results of a preliminary analysis of microperturbations on the International Space Station during physical exercises of the crew are presented. The goal of this paper is to identify the parameters of perturbations when physical exercises are performed. The results of measurements by sensors of microaccelerations of both Russian and American segments during physical exercises in the service module of the Russian segment are analyzed.  相似文献   

11.
方宝东  陈昌亚  王伟  何赟晟 《上海航天》2012,29(3):34-37,58
介绍了俄罗斯Fregat上面级的基本功能、组成和主要技术指标。给出了其几何布置、贮箱可承力、独立性与自主性、液-固耦合及大幅晃动和多次起动等特点与关键技术等。给出了2003年欧空局火星探测项目、2005年欧空局金星探测项目和中俄联合火星探测项目等典型应用。  相似文献   

12.
俄罗斯空间站推进剂补加程序分析   总被引:5,自引:0,他引:5  
江铭伟 《火箭推进》2013,39(4):8-12
补加程序是推进剂补加系统的关键技术之一,而目前也仅有俄罗斯有成功应用的经验.根据目前获取的资料,经过计算、仿真和论证,对俄罗斯空间站的补加系统进行了研究,分析了ATV对空间站进行推进剂补加的程序,初步得到了俄罗斯空间站推进剂补加的特点,可作为目前我国空间站方案论证期间补加程序的参考.  相似文献   

13.
For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: space suit commonality and interoperability; increased crew productivity and safety; increase in useful life and reduced maintainability; reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European Russian EVA Suit 2000 Development Programme. This paper gives an overview of the results of the feasibility study and presents the joint requirements and the proposed design concept of a jointly developed European Russian space suit.  相似文献   

14.
Moroz  V. I.  Huntress  W. T.  Shevalev  I. L. 《Cosmic Research》2002,40(5):419-445
Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.  相似文献   

15.
Manned spaceflight has been an important element of the German space program over the last decades. This is demonstrated by the nationally managed space missions Spacelab D-l (1985), D-2 (1993), and MIR '92 as well as by the participation in the 1st Spacelab mission FSLP (1983), the NASA missions IML-1 (1992) and IML-2 (1994), as well as in the ESA missions EUROMIR '94 and '95. On February 12th, this year, the German cosmonaut Reinhold Ewald was launched together with his Russian colleagues Wasilij Zibliew and Alexander Lasudkin onboard of a Soyuz spacecraft for another stay of a German cosmonaut onboard of the Russian Space Station MIR. This mission--the so-called German/Russian MIR '97--was, of course, another cornerstone with regard to the cooperation between Russian and German space organizations. The cooperation in the area of manned missions began 1978 with the flight of the German cosmonaut Sigmund Jahn onboard of Salyut 6, at that time a cooperation between the Soviet Union and the German Democratic Republic in the frame of the Interkosmos Program. In March 1992, it was followed by the flight of Klaus Dietrich Flade with his stay onboard of MIR. After two further successful ESA missions, EUROMIR '94 and '95 with the two German cosmonauts Ulf Merbold and Thomas Reiter and with a marked contribution of German scientists, the decision was taken to perform another German/Russian MIR mission, the so-called MIR '97. In Germany, MIR'97 was managed and performed in a joint effort between several partners. DARA, the German Space Agency, was responsible for the overall program and project management, while DLR, the German Aerospace Research Establishment, was responsible for the cosmonaut training, for medical operations, for the mission control at GSOC in Oberpfaffenhofen as well as for user support.  相似文献   

16.
该文主要叙述俄罗斯“火星—96”探测器的飞行过程,着陆器在火星上的着陆过程以及穿透器的工作情况。  相似文献   

17.
The aim of this article is to define the major elements of the institutional design process for the Russian rocket and space industry, a process which must take account of the changed economic conditions in the country and provide for the industry's integration into the wider national economy. The article does this by demonstrating the features that need to be understood, highlighting the problems that need to be resolved, and arguing that an institutional design process will have to be based on compromise and accommodation of all the different actors involved. The article deals with a number of particular problems challenging the managers and methodologists of the Russian national space programme of today.  相似文献   

18.
载人航天器加压连接机构研究   总被引:1,自引:1,他引:0  
载人航天器加压连接机构,按连接功能可分为对接机构、停靠机构与统一对接/停靠机构3类。目前空间应用的连接机构有俄罗斯杆锥对接机构,俄罗斯混合对接机构,导向瓣内翻式“雌雄同体(异体同构)周边装配系统”,以及美国的“通用停靠机构”。统一对接/停靠机构正在研制中,如欧洲的“国际停靠对接机构”与美国的“NASA对接系统”。文章全面、系统地分析了对接机构、停靠机构与统一对接/停靠机构的构型与特点,以及连接机构的统一性与标准化问题。  相似文献   

19.
This article examines recent difficulties in the Russian space program through the analytic lens of the Russian political and economic reform effort. It argues that Russia’s problems go beyond a lack of financing. Instead, lack of investment and ‘brain drain’ have caused deep infrastructural problems which would take years of restored funding and political priority to fix. Russia’s continued activity in space stems almost solely from inertia left over from the Soviet period, and from funding provided by foreign partners anxious to exploit the cheap, sturdy elements of that Soviet legacy.  相似文献   

20.
The paper considers the design, features, and characteristics of the Russian space-ground very long baseline radio interferometer (VLBRI) RadioAstron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号